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Abstract. In this report the Rosenbrock formulae are considered. These formulae are particularly suited
for the integration of stiff differential systems such as the ones arising from reaction kinetics combustion
modeling.
The numerical techniques for the analysis of the A-stability and of the L-stability of a third order Rosen-
brock formula are reported.
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1 Introduction and notations

Let us consider the initial value problem in autonomous form described by m differential equations

u′(t) = f(u(t)) t > t0, (1)

subject by the given conditions
u(t0) = u0. (2)

The q−stage semi-implicit Runge-Kutta methods introduced by Rosenbrock in [26] for the computation
of the approximation un of the solution u(tn) at the point tn of (1)–(2), has the form (e.g., [20, p. 247])

un+1 = un + h

q∑
j=1

cjKj , (3)

where h is the step length (tn+1 = tn + h) and

K1 = f(un) + α1hJ(un)K1;

K2 = f(un + hb21K1) + α2hJ(un + hβ21K1)K2;

K3 = f(un + hb31K1 + hb32K2) + α3hJ(un + hβ31K1 + β32K2)K3; (4)

...

Kq = f(un + h

q−1∑
i=1

bqiKi) + αqhJ(un + h

q−1∑
i=1

βqiKi)Kq.

Here J(un) is the Jacobian matrix evaluated at un. The method described by the formulae (3)–(4) is
even called Rosenbrock method (procedure) or Runge-Kutta-Rosenbrock method.1 Formulae (3)–(4) are
called Rosenbrock formulae.

We remind some notations that are used in the following.
The Jacobian matrix evaluated at u ≡ u(t) is defined as

J(u) =


∂f1
∂u1

(u) ... ∂f1
∂um

(u)
...

...
∂fm
∂u1

(u) ... ∂fm
∂um

(u)

 ,

the gradient of the function fi, i = 1, ...,m, at u is

∇fi(u) =


∂fi
∂u1

(u)
...

∂fi
∂um

(u)

 ,

and the Hessian matrix of fi, i = 1, ...,m, at u is

Hi(u) =


∂2fi
∂u2

1
(u) ... ∂2fi

∂u1∂um
(u)

...
...

∂2fi
∂um∂u1

(u) ... ∂2fi
∂u2

m
(u)

 .

The Taylor expansions in several variables of the function fi, i = 1, ...,m, at u+ v with respect to u, are

fi(u+ v) = fi(u) +∇fi(u)
Tv +

1

2
vTHi(u)v + ... (5)

1Rosenbrock in [26] call these formulae implicit processes.
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Thus by Kronecker product definition (e.g., [24, p. 236]), for all the components of the vector f we have

f(u+ v) = f(u) + J(u)v +
1

2

(
I ⊗ vT

) H1(u)
...

Hm(u)

v + ...

Here I is the identity matrix of order m. Thus, setting2

H(v,u) =
(
I ⊗ vT

) H1(u)
...

Hm(u)

 , (6)

we obtain

f(u+ v) = f(u) + J(u)v +
1

2
H(v,u)v + ... (7)

The Taylor expansions in several variables of the derivatives of fi, i = 1, ...,m, at u+ v with respect to
u, are

∂fi
∂u1

(u+ v) =
∂fi
∂u1

(u) +
∂

∂u1

(
∂fi
∂u1

(u)

)
v1 +

∂

∂u2

(
∂fi
∂u1

(u)

)
v2 + ...+

∂

∂um

(
∂fi
∂u1

(u)

)
vm + ...

...

∂fi
∂um

(u+ v) =
∂fi
∂um

(u) +
∂

∂u1

(
∂fi
∂um

(u)

)
v1 +

∂

∂u2

(
∂fi
∂um

(u)

)
v2 + ...+

∂

∂um

(
∂fi
∂um

(u)

)
vm + ...

then,

J(u+ v) = J(u) +

+


∂

∂u1

(
∂f1
∂u1

(u)
)
v1 + ...+ ∂

∂um

(
∂f1
∂u1

(u)
)
vm ... ∂

∂u1

(
∂f1
∂um

(u)
)
v1 + ...+ ∂

∂um

(
∂f1
∂um

(u)
)
vm

.

..
.
..

∂
∂u1

(
∂fm
∂u1

(u)
)
v1 + ...+ ∂

∂um

(
∂fm
∂u1

(u)
)
vm ... ∂

∂u1

(
∂fm
∂um

(u)
)
v1 + ...+ ∂

∂um

(
∂fm
∂um

(u)
)
vm

+ ...

= J(u) +


∂2f1
∂u2

1
(u)v1 + ...+ ∂2f1

∂um∂u1
(u)vm ... ∂2f1

∂u1∂um
(u)v1 + ...+ ∂2f1

∂u2
m

(u)vm

.

..
.
..

∂2fm
∂u2

1
(u)v1 + ...+ ∂2fm

∂um∂u1
(u)vm ... ∂2fm

∂u1∂um
(u)v1 + ...+ ∂2fm

∂u2
m

(u)vm

+ ...

Thus by Kronecker product definition, we can write

J(u+ v) = J(u) +
(
I ⊗ vT

) H1(u)
...

Hm(u)

+ ...

and by the definition (6), we can write

J(u+ v) = J(u) +H(v,u) + ... (8)

2We observe that for any vectors u, v and ṽ of m components and any real scalars α and β we have

H(αv + βṽ,u) = αH(v,u) + βH(ṽ,u);

Hu(αv + βṽ,u) = αHu(v,u) + βHu(ṽ,u).

4



By omitting the point of evaluation of the functions, we have the following notations for higher order
derivatives of u.
For the second derivatives of u we have

u′′ =

 u′′
1

...
u′′
m

 =


d
dt
f1
...

d
dt
fm

 =


∂f1
∂u1

u′
1 + ...+ ∂f1

∂um
u′
m

...
∂fm
∂u1

u′
1 + ...+ ∂fm

∂um
u′
m

 =


∂f1
∂u1

f1 + ...+ ∂f1
∂um

fm
...

∂fm
∂u1

f1 + ...+ ∂fm
∂um

fm

 = Jf . (9)

Here, we can denote f ′ = ( d
dtf1, ...,

d
dtfm)T .

For the third order derivatives we have,

u′′′ =

 u′′′
1
.
..

u′′′
m

 =⇒


u′′′
1 = d

dt

(
∂f1
∂u1

f1
)
+ ...+ d

dt

(
∂f1
∂um

fm
)
=

.

..

u′′′
m = d

dt

(
∂fm
∂u1

f1
)
+ ...+ d

dt

(
∂fm
∂um

fm
)
=

= ∂
∂u1

(
∂f1
∂u1

f1
)
u′
1 + ...+ ∂

∂um

(
∂f1
∂u1

f1
)
u′
m + ...+ ∂

∂u1

(
∂f1
∂um

fm
)
u′
1 + ...+ ∂

∂um

(
∂f1
∂um

fm
)
u′
m =

.

..

= ∂
∂u1

(
∂fm
∂u1

f1
)
u′
1 + ...+ ∂

∂um

(
∂fm
∂u1

f1
)
u′
m + ...+ ∂

∂u1

(
∂fm
∂um

fm
)
u′
1 + ...+ ∂

∂um

(
∂fm
∂um

fm
)
u′
m =

=

(
∂2f1
∂u2

1
f1 + ( ∂f1

∂u1
)2
)
f1 + ...+

(
∂2f1

∂um∂u1
f1 + ∂f1

∂u1

∂f1
∂um

)
fm + ...+

(
∂2f1

∂u1∂um
fm + ∂f1

∂u1

∂fm
∂u1

)
f1 + ...+

(
∂2f1
∂u2

m
fm + ∂f1

∂um

∂fm
∂um

)
fm

..

.

=

(
∂2fm
∂u2

1
f1 + ∂fm

∂u1

∂f1
∂u1

)
f1 + ...+

(
∂2fm

∂um∂u1
f1 + ∂fm

∂um

∂f1
∂um

)
fm + ....+

(
∂2fm

∂u1∂um
fm + ∂fm

∂um

∂fm
∂u1

)
f1 + ...+

(
∂2fm
∂u2

m
fm + ( ∂fm

∂um
)2
)
fm

Then, we have

u′′′
1 =

(
f1 ... fm

)
∂2f1
∂u2

1
... ∂2f1

∂u1∂um

...
...

∂2f1
∂um∂u1

... ∂2f1
∂u2

m


 f1

...
fm

+

+
(

∂f1
∂u1

... ∂f1
∂um

)
∂f1
∂u1

... ∂f1
∂um

...
...

∂fm
∂u1

... ∂fm
∂um


 f1

...
fm


...

u′′′
m =

(
f1 ... fm

)
∂2fm
∂u2

1
... ∂2fm

∂u1∂um

...
...

∂2fm
∂um∂u1

... ∂2fm
∂u2

m


 f1

...
fm

+

+
(

∂fm
∂u1

... ∂fm
∂um

)
∂f1
∂u1

... ∂f1
∂um

...
...

∂fm
∂u1

... ∂fm
∂um


 f1

...
fm


that is, by omitting the dependency of the evaluation point u of Hi, for i = 1, ...,m, we can write

u′′′
i = fTHif +∇fT

i Jf . (10)
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Thus by Kronecker product definition and by (6) we can write

u′′′ =
(
I ⊗ fT

) H1

...
Hm

f + J2f = H(f)f + J2f , (11)

where we used the definition in (6).3

Finally, we keep in mind the Taylor expansion of u(t) at t = tn+1 with respect to t = tn; for sake
of simplicity of notation, we denote u ≡ u(tn), f ≡ f(u(tn)), J ≡ J(u(tn)), Hi ≡ Hi(u(tn)) and
H(f) ≡ H(f(u(tn)),u(tn)). Then, from (1), (9) and (11), we have

u(tn+1) = u+ hf +
h2

2
Jf +

h3

6
(H(f)f + J2f) +O(h4). (12)

3From (6), we have

H(f) ≡ H(f ,u) =
(

I ⊗ fT
) H1(u)

.

..
Hm(u)

 .
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2 Two- and three-stage semi-implicit Runge-Kutta methods of
order three

Let us consider the Rosenbrock procedure (3)–(4) with q = 2 and q = 3. From (4) we can write4

K1 = (I − α1hJ(un))
−1f(un);

K2 = (I − α2hJ(un + hβ21K1))
−1f(un + hb21K1);

K3 = (I − α3hJ(un + hβ31K1 + β32K2))
−1f(un + hb31K1 + hb32K2).

For h sufficiently small, we can apply Neumann Lemma (e.g., [23, p. 26]) and we have

(I − αhJ(v))−1 = I +
∞∑
i=1

(αhJ(v))i. (13)

Thus,

K1 = (I − α1hJ(un))
−1f(un)

= (I + α1hJ(un) + α2
1h

2J(un)
2 +O(h3))f(un)

= f(un) + α1hJ(un)f(un) + α2
1h

2J(un)
2f(un) +O(h3). (14)

From (7) for f(un + hb21K1) and from the expression of K1 in (14), we have

K2 = (I − α2hJ(un + hβ21K1))
−1f(un + hb21K1)

= (I − α2hJ(un + hβ21K1))
−1

(
f(un) + hb21J(un)K1 +

b221h
2

2
H(K1,un)K1 +O(h3)

)
= (I − α2hJ(un + hβ21K1))

−1(f(un) + hb21J(un)f(un) +

+h2

[
b21α1J(un)

2f(un) +
b221
2

H(f(un),un)f(un)

]
+O(h3)).

From (8) and the expression of K1 in (14), we write

J(un + hβ21K1) = J(un) + hβ21H(K1,un) +O(h2)

= J(un) + hβ21H(f(un),un) +O(h2),

and the equality in (13) yields

(I − α2hJ(un + hβ21K1))
−1 = I + α2hJ(un + hβ21K1) + α2

2h
2J(un + hβ21K1)

2 +O(h3)

= I + α2hJ(un) + α2h
2β21H(f(un),un) + α2

2h
2J(un)

2 +O(h3).

Then, we have

K2 =
(
I + α2hJ(un) + α2h

2β21H(f(un),un) + α2
2h

2J(un)
2 +O(h3)

)
×

×
(
f(un) + hb21J(un)f(un) + h2

[
b21α1J(un)

2f(un) +
b221
2

H(f(un),un)f(un)

]
+O(h3)

)
= f(un) + h [b21 + α2] J(un)f(un) +

+h2

[
(b21(α1 + α2) + α2

2)J(un)
2f(un) + (

b221
2

+ α2β21)H(f(un),un)f(un)

]
+O(h3). (15)

Analogously, from (7) for f(un + hb31K1 + hb32K2) and by using the expressions of K1 and K2 in (14)
and (15) respectively, and, in addition, from the Neumann Lemma (13) with the expressions (14) and
(15) again, we can write

K3 = f(un) + h [b31 + b32 + α3] J(un)f(un) +

+h2 [b31α1 + b32(b21 + α2) + α2
3 + α3(b21 + α2)

]
J(un)

2f(un) +

+h2

[
1

2
(b31 + b32)

2 + α3(β31 + β32)

]
H(f(un),un)f(un) +O(h3). (16)

4By inversion of a matrix we do not mean the actual matrix inversion. What is required is the solution of a system of
algebraic linear equations that can be realized by factorization methods or by iterative methods.
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By substituting the expression (14) of K1 and (15) of K2 in the method (3) we obtain for q = 2

un+1 = un + hẽ1f(un) + h2ẽ2J(un)f(un) + h3 [ẽ3J(un)
2f(un) + ẽ4H(f(un),un)f(un)

]
+O(h4), (17)

where the coefficients ẽ1, ẽ2, ẽ3 and ẽ4 have the expressions

ẽ1 = c1 + c2;

ẽ2 = c1α1 + c2(b21 + α2); (18)

ẽ3 = c1α
2
1 + c2b21(α1 + α2) + c2α

2
2;

ẽ4 =
c2b

2
21

2
+ c2α2β21;

and, for q = 3

un+1 = un + he1f(un) + h2e2J(un)f(un) + h3 [e3J(un)
2f(un) + e4H(f(un),un)f(un)

]
+O(h4), (19)

where the coefficients e1, e2, e3 and e4 have the expressions

e1 = c1 + c2 + c3;

e2 = c1α1 + c2(b21 + α2) + c3(b31 + b32 + α3); (20)

e3 = c1α
2
1 + c2b21(α1 + α2) + c2α

2
2 + c3b31α1 + c3b32(b21 + α2) + c3α

2
3 + c3α3(b21 + α2);

e4 =
c2b

2
21

2
+ c2α2β21 +

c3
2
(b31 + b32)

2 + c3α3(β31 + β32).

In order that the two-stage Runge-Kutta method (3)–(4) (with q = 2) has order three, we have to compare
(17) with (12); then the coefficients in (18) should satisfy the conditions

ẽ1 = 1; ẽ2 =
1

2
; ẽ3 =

1

6
; ẽ4 =

1

6
. (21)

Two-stage, third order semi-implicit Runge-Kutta schemes that have enjoyed great popularity are Rosen-
brock’s formula ([26]) where the coefficients are

α1 = 1 +

√
6

6
; α2 = 1−

√
6

6
; b21 = β21 =

−6−
√
6 +

√
58 + 20

√
6

6 + 2
√
6

≃ 0.17378667;

c2 =

√
6
6 + 1

2

2
√
6
6 − b21

; c1 = 1− c2,

and Calahan’s formula ([14]) where the coefficients are

α1 = α2 =
3 +

√
3

6
; b21 = − 2√

3
; β21 = 0; c1 =

3

4
; c2 =

1

4
.

Analogously, by comparing (19) with (12), the three-stage Runge-Kutta method (3)–(4) (with q = 3) has
order three if we choose

e1 = 1; e2 =
1

2
; e3 =

1

6
; e4 =

1

6
. (22)

In the next three sections the stability of two- and three-stage semi-implicit Runge-Kutta methods of
order three is analysed.
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3 A-stability for two-stage semi-implicit Runge-Kutta methods
of order three

Now we wish to study the stability of the Rosenbrock procedure (3)–(4) when q = 2.
We recall that a method is called A-stable if and only if |un+1/un| = |R(z)| ≤ 1, z = hλ, when the
method is applied with any positive step size h to the scalar equation u′(t) = λu(t), where λ is a complex
constant with non positive real part, i.e., ℜ(z) ≤ 0 (e.g., [18, p. 74]).
The term R(z) is called the stability function.
Furthermore, a method is called L-stable if it is A-stable and |R(z)| → 0 as z → −∞ (e.g., [20, p. 237]).
Let us consider the two-stage semi-implicit Runge-Kutta method (3)–(4) applied to the scalar equation

u′(t) = λu(t). (23)

Here, m = 1. We have,
un+1 = un + hc1K1 + hc2K2,

with

K1 =
λun

1− α1hλ
; K2 =

λ(un + hb21K1)

1− α2hλ
=

(
λun + b21

hλ2

1− α1hλ
un

)
/(1− α2hλ),

differently written,

K1 =
λ

1− α1z
un; K2 =

λ

(1− α1z)(1− α2z)
(1 + (b21 − α1)z)un,

and then,

un+1

un
= 1 + c1

z

1− α1z
+ c2

z(1 + (b21 − α1)z)

(1− α1z)(1− α2z)

(24)

=
1 + (c1 + c2 − (α1 + α2))z + (α1α2 − c1α2 − c2α1 + c2b21)z

2

1− (α1 + α2)z + α1α2z2
.

In order that the two-stage semi-implicit Runge-Kutta method has order three, conditions (21) should
be satisfied. For the problem (23), the formula (17) becomes

un+1 = un + hλẽ1un + h2λ2ẽ2un + h3
[
λ3ẽ3un + 0 · ẽ4

]
+O(h4),

and conditions (18) and (21) are

c1 + c2 = 1; (25)

c2b21 =
1

2
− c1α1 − c2α2; (26)

c1α
2
1 + c2b21(α1 + α2) + c2α

2
2 =

1

6
=⇒

(
1

2
− c2α2

)
α1 +

(
1

2
− c1α1

)
α2 =

1

6
.

The last (third) equation can be written

1

2
(α1 + α2)− α1α2 =

1

6
. (27)

By using (25) and (26), the coefficient of z2 of the numerator in the last expression of (24) can be written

α1α2 − c1α2 − c2α1 + c2b21 = α1α2 − c1α2 − c2α1 +
1

2
− c1α1 − c2α2 =

= α1α2 − c1(α1 + α2)− c2(α1 + α2) +
1

2
= α1α2 − (α1 + α2) +

1

2
.
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Then,
un+1

un
= R(z) ≡ P (z)

Q(z)
=

1 + (1− (α1 + α2))z + (α1α2 − (α1 + α2) +
1
2 )z

2

1− (α1 + α2)z + α1α2z2
.

For sufficiently small values of z, from the infinite geometric series, we have

un+1

un
=

[
1 + (1− (α1 + α2))z + (α1α2 − (α1 + α2) +

1

2
)z2

] [
1 + ((α1 + α2)z − α1α2z

2)+

+((α1 + α2)z + α1α2z
2)2 + ((α1 + α2)z + α1α2z

2)3 + ...
]

=

[
1 + (1− (α1 + α2))z + (α1α2 − (α1 + α2) +

1

2
)z2

] [
1 + (α1 + α2)z + ((α1 + α2)

2 − α1α2)z
2+

+((α1 + α2)
3 − 2α1α2(α1 + α2))z

3 +O(z4)
]

= 1 + (α1 + α2)z + ((α1 + α2)
2 − α1α2)z

2 + ((α1 + α2)
3 − 2α1α2(α1 + α2))z

3 +

+(1− (α1 + α2))z + (1− (α1 + α2))(α1 + α2)z
2 + (1− (α1 + α2))((α1 + α2)

2 − α1α2)z
3 +

+(α1α2 − (α1 + α2) +
1

2
)z2 + (α1α2 − (α1 + α2) +

1

2
)(α1 + α2)z

3 +O(z4)

= 1 + z +
1

2
z2 + (

1

2
(α1 + α2)− α1α2)z

3 +O(z4).

From (27), we have
un+1

un
= 1 + z +

1

2
z2 +

1

6
z3 +O(z4).

that is the stability function R(z) of the method approximates the exponential function ez.
Since the two-stage semi-implicit Runge-Kutta method (3) of order three

un+1 =
P (z)

Q(z)
un,

has the polynomials P (z) and Q(z) of the same degree, then by the well known result of Birkhoff and
Varga (1965, e.g., [20, p. 237]), the method is A-stable.
Furthermore we see that a two-stage semi-implicit Runge-Kutta method of order three can not be L-
stable.5

Indeed, by the well known result of Ehle (1969, e.g., [20, p. 237]), the polynomial P (z) must have degree
equal to one. That is, condition

α1α2 − (α1 + α2) +
1

2
= 0, (28)

or taking into account of formula (24), the condition

α1α2 − c1α2 − c2α1 + c2b21 = 0,

holds. By adding this last condition to (18) and (21), we have the nonlinear system
c1 + c2 = 1
c1α1 + c2(b21 + α2) =

1
2

c1α
2
1 + c2b21(α1 + α2) + c2α

2
2 = 1

6
c2b

2
21

2 + c2α2β21 = 1
6

α1α2 − c1α2 − c2α1 + c2b21 = 0

(29)

This nonlinear system does not admit a solution.6

5In [5, Theor. 2] is proved that the order of an L-stable, q-stage semi-implicit Runge-Kutta method is at most q.
6Indeed, setting x = α1α2 and y = α1 + α2, the third equation of (29) can be written as (27)

1

2
y − x =

1

6
,
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4 A-stability and L-stability for three-stage semi-implicit Runge-
Kutta methods of order three

Let us consider the Rosenbrock procedure (3)–(4) when q = 3, applied to the scalar equation (23)

u′(t) = λu(t).

Here, m = 1. We have,
un+1 = un + hc1K1 + hc2K2 + hc3K3,

with

K1 =
λun

1− α1hλ
; K2 =

λ(un + hb21K1)

1− α2hλ
=

(
λ+ b21

hλ2

1− α1hλ

)
un/(1− α2hλ);

K3 =
λ(un + hb31K1 + hb32K2)

1− α3hλ
=

λ

1− α3hλ

[
1 + b31

λh

1− α1hλ
+ b32

λh

1− α2hλ

(
1 + b21

λh

1− α1hλ

)]
un.

Set z = hλ we have

K1 =
λ

1− α1z
un; K2 =

λ

(1− α1z)(1− α2z)
(1 + (b21 − α1)z)un;

K3 =
λ

1− α3z

[
1 +

b31z

1− α1z
+

b32z

1− α2z

(
1 + b21

z

1− α1z

)]
un.

By easy calculations we obtain the following expression for K3

K3 =
λ
[
1 + (b31 + b32 − α1 − α2)z + (b32(b21 − α1)− α2(b31 − α1))z

2
]

(1− α1z)(1− α2z)(1− α3z)
un,

and then,

un+1

un
= 1 + c1

z

1− α1z
+ c2

z(1 + (b21 − α1)z)

(1− α1z)(1− α2z)
+

+c3
z
[
1 + (b31 + b32 − α1 − α2)z + (b32(b21 − α1)− α2(b31 − α1))z

2
]

(1− α1z)(1− α2z)(1− α3z)
.

The method can be written as
un+1

un
= R(z),

where R(z) = P (z)/Q(z) with

Q(z) = (1− α1z)(1− α2z)(1− α3z) (30)

= 1− (α1 + α2 + α3)z + (α1α2 + α1α3 + α2α3)z
2 − α1α2α3z

3,

and by easy calculations

P (z) = 1 + (c1 + c2 + c3 − α1 − α2 − α3)z + [α1α2 + α1α3 + α2α3 − c1(α2 + α3)−
−c2(α1 + α3 − b21)− c3(α1 + α2 − b31 − b32)] z

2 + (31)

+ [−α1α2α3 + c1α2α3 + c2α1α3 + c3α1α2 − c2α3b21 − c3b31α2 − c3b32α1 + c3b32b21] z
3.

and the fifth equation of (29), written as (28), yields

x− y = −
1

2
.

This two last equations in x and y produce the solution x = 1/6 and y = 2/3. Then we have the simple algebraic equation
in α1

α1(
2

3
− α1) =

1

6
, =⇒ −α2

1 +
2

3
α1 −

1

6
= 0,

that does not admit real solutions.

11



We observe that the polynomials P (z) and Q(z) has the same degree. Then, in order to have the A-
stability of the three-stage semi-implicit Runge-Kutta method of third order, we should have that the
stability function R(z) of the method approximates the exponential functions ez with an error of O(z4).
We must have that the following equality holds

P (z) = (1 + z +
z2

2
+

z3

6
)Q(z). (32)

The right hand side of (32) becomes

(1 + z +
z2

2
+

z3

6
)(1− (α1 + α2 + α3)z + (α1α2 + α1α3 + α2α3)z

2 − α1α2α3z
3) =

= 1 + (1− α1 − α2 − α3)z + (
1

2
+ α1α2 + α1α3 + α2α3 − α1 − α2 − α3)z

2 + (33)

+(
1

6
− α1α2α3 + α1α2 + α1α3 + α2α3 −

1

2
(α1 + α2 + α3))z

3.

In order that expression in (33) is equal to the one of P (z) in (31) we must have the following conditions
given by the coefficients of z and z2:

c1 + c2 + c3 = 1, (34)

and

−c1(α2 + α3)− c2(α1 + α3 − b21)− c3(α1 + α2 − b31 − b32) =
1

2
− α1 − α2 − α3,

that, by adding −c1α1 − c2α2 − c3α3 and keeping into account of (34), becomes

c1α1 + c2(α2 + b21) + c3(α3 + b31 + b32) =
1

2
. (35)

The formulae (34) and (35) are the first and the second formula of (20) and (22), that are two conditions
in order that the method has order three.
In order to equal the coefficients of z3 of (33) and (31) we must have

c1α2α3 + c2α1α3 + c3α1α2 − c2α3b21 − c3b31α2 − c3b32α1 + c3b32b21 =
1

6
− 1

2
(α1 + α2 + α3) +

+α1α2 + α1α3 + α2α3,

that is

−c2α3b21 − c3b31α2 − c3b32α1 + c3b32b21 =
1

6
− 1

2
(α1 + α2 + α3) +

+α1α2 + α1α3 + α2α3 −
−c1α2α3 − c2α1α3 − c3α1α2.

Since (34), we have

−c2α3b21 − c3b31α2 − c3b32α1 + c3b32b21 =
1

6
− 1

2
(α1 + α2 + α3) +

+(α1α2 + α1α3 + α2α3)(c1 + c2 + c3)−
−c1α2α3 − c2α1α3 − c3α1α2,

and then,

−c2α3b21 − c3b31α2 − c3b32α1 + c3b32b21 =
1

6
− 1

2
(α1 + α2 + α3) +

(36)

+c1α1(α2 + α3) + c2α2(α1 + α3) + c3α3(α1 + α2).

12



Let us consider the second equation of (20) and (22) or equation (35) that can be written

c2b21 + c3(b31 + b32) =
1

2
− c1α1 − c2α2 − c3α3,

and multiplying each term for α1 + α2 + α3, we have

c2b21(α1 + α2 + α3) + c3b31(α1 + α2 + α3) + c3b32(α1 + α2 + α3) =
1

2
(α1 + α2 + α3)−

−c1α1(α1 + α2 + α3)− (37)

−c2α2(α1 + α2 + α3)−
−c3α3(α1 + α2 + α3).

Now, let us consider the third equation of (20) and (22)

c3b32b21 =
1

6
− c3α1b31 − c3α2b32 − c3α3b21 − c3α3α2 − c2b21(α1 + α2)− c1α

2
1 − c2α

2
2 − c3α

2
3.

By adding the term −c2α3b21 − c3α2b31 − c3α1b32 to both the members of the last equation, it becomes

−c2α3b21 − c3α2b31 − c3α1b32 + c3b32b21 =
1

6
− c2b21(α1 + α2 + α3)−

−c3b32(α1 + α2)− c3b31(α1 + α2)− (38)

−c3b21α3 − c3α2α3 − c1α
2
1 − c2α

2
2 − c3α

2
3.

The right hand side of (38) can be written

1

6
− c2b21(α1 + α2 + α3)− c3b32(α1 + α2 + α3) + c3b32α3 − c3b31(α1 + α2 + α3) + c3b31α3 −

−c3b21α3 − c3α2α3 − c1α
2
1 − c2α

2
2 − c3α

2
3,

and by (37), this last expression can be written as

1

6
− 1

2
(α1 + α2 + α3) + c1α1(α1 + α2 + α3) + c2α2(α1 + α2 + α3) + c3α3(α1 + α2 + α3) +

+c3b32α3 + c3b31α3 − c3b21α3 − c3α2α3 − c1α
2
1 − c2α

2
2 − c3α

2
3,

that is equal to

1

6
− 1

2
(α1 + α2 + α3) + c1α1(α1 + α2) + c2α2(α1 + α3) + c3α3(α1 + α2) +

+c3α3(b32 + b31 − b21 − α2). (39)

Then, from (39), we have that (38), i.e., the third equation of (20) and (22), e3 = 1/6, is

−c2α3b21 − c3α2b31 − c3α1b32 + c3b32b21 =
1

6
− 1

2
(α1 + α2 + α3) +

+c1α1(α1 + α2) + c2α2(α1 + α3) +

+c3α3(α1 + α2) + c3α3(b32 + b31 − b21 − α2),

and this is equivalent to equation (36), if and only if the condition

c3α3(b32 + b31 − b21 − α2) = 0, (40)

holds.
Thus, in order that the three-stage semi-implicit Runge-Kutta method has order three and be A-stable,
the conditions (20) and (22) and (40) must be satisfied, i.e.,

c1 + c2 + c3 = 1;
c1α1 + c2(b21 + α2) + c3(b31 + b32 + α3) = 1/2;

c1α
2
1 + c2b21(α1 + α2) + c2α

2
2 + c3b31α1 + c3b32(b21 + α2) + c3α

2
3 + c3α3(b21 + α2) = 1/6;

c2b
2
21

2 + c2α2β21 +
c3
2 (b31 + b32)

2 + c3α3(β31 + β32) = 1/6;
c3α3(b32 + b31 − b21 − α2) = 0.
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5 A three-stage semi-implicit Runge-Kutta method

5.1 Conditions for order three and for A-stability

When we consider the Rosenbrock procedure (3)–(4) with q = 3, because of the expression of K1, K2

and K3

K1 = (I − α1hJ(un))
−1f(un);

K2 = (I − α2hJ(un + hβ21K1))
−1f(un + hb21K1);

K3 = (I − α3hJ(un + hβ31K1 + β32K2))
−1f(un + hb31K1 + hb32K2);

at each time step tn, we have to solve three linear systems where the coefficient matrix is the Jacobian
evaluated at three different points.
Hence, we may measure the computational efficiency of a method in terms of:

(i) number of Jacobian evaluations;

(ii) number of matrix factorizations;7

(iii) number of functional evaluations.

Then, it is desirable to develop methods which are computationally efficient and yet maintain maximum
accuracy.
We see a three-stage semi-implicit Runge-Kutta method of order three that requires only one Jacobian
evaluation and then, only one factorization matrix, and three functional evaluation at each time step tn.
As the Calahan’s formulae for two-stage semi-implicit Runge-Kutta methods, we consider a method ([4])
where

α ≡ α1 = α2 = α3, β21 = β31 = β32 = 0.

In this case, the formulae (20) and (22) to have a method of order three, become

c1 + c2 + c3 = 1;

c2b21 + c3(b31 + b32) =
1

2
− α;

c3b21b32 =
1

6
− α2 − c3α

2 − (c2b21 + c3(b31 + b32))α− b21(c2 + c3)α (41)

=
1

6
− (

1

2
+ b21(c2 + c3))α− c3α

2;

c2
b221
2

+ c3
1

2
(b31 + b32)

2 =
1

6
.

Furthermore, from the expression of P (z) in (31), we can write

P (z) = 1 + (1− 3α)z +
[
3α2 − c12α− c2(2α− b21)− c3(2α− b31 − b32)

]
z2 +

+
[
−α3 + α2 − c2αb21 + c3b21b32 − c3α(b31 + b32)

]
z3. (42)

Keeping into account the first and the second equation of (41), the coefficient of z2 in (42) becomes

3α2 − 3α+
1

2
. (43)

Keeping into account the second and the third equation of (41), the coefficient of z3 in (42) becomes

−α3 + (2− c3)α
2 − (1 + b21(c2 + c3))α+

1

6
. (44)

7We consider to solve the linear algebraic system, whose coefficient matrix is the Jacobian, by factorization methods as
Gaussian elimination method.
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From the second equation of (41), we can write

−αc2b21 = −α

2
+ α2 + αc3(b31 + b32),

then, the expression (44) becomes

−α3 + 3α2 − 3

2
α+

1

6
+ c3α(b31 + b32 − b21 − α).

If we require that the condition for the A-stability (40) holds, i.e.,

c3α(b32 + b31 − b21 − α) = 0,

then, the coefficient of z3 becomes

−α3 + 3α2 − 3

2
α+

1

6
. (45)

This value for the coefficient of z3 can be also obtained if, in the expression (44), we require{
2− c3 = 3;

1 + b21(c2 + c3) = 3/2.
(46)

5.2 Computation of the coefficients

We compute the coefficients of the method in terms of the parameter α.
Let us consider the conditions (41) and (46):

c1 + c2 + c3 = 1;

c2b21 + c3(b31 + b32) =
1

2
− α;

c3b21b32 =
1

6
− (

1

2
+ b21(c2 + c3))α− c3α

2; (47)

c2
b221
2

+ c3
1

2
(b31 + b32)

2 =
1

6
;

2− c3 = 3;

1 + b21(c2 + c3) = 3/2.

From the fifth equation of (47), we obtain
c3 = −1. (48)

From the sixth equation of (47) and keeping into account of (48), we have

c2b21 =
1

2
+ b21. (49)

From the first equation of (47) and keeping into account of (48), we have

c1 + c2 = 2. (50)

From the second equation of (47) and keeping into account of (48) and (49), we have

b31 + b32 = b21 + α. (51)

From the third equation of (47) and keeping into account of (48) and (49), we have

−b32b21 =
1

6
− α+ α2. (52)

Multiplying by 2 the fourth equation of (47) and keeping into account of (48) and (51), we have

b21 [c2b21 − b21 − 2α] =
1

3
+ α2. (53)

15



From (53) and keeping into account of (49), we have

b21 = (
1

3
+ α2)/(

1

2
− 2α). (54)

Then, from (49) and keeping into account of (54), we have

c2 = 1 +
1

2b21
= 1 +

1
2 − 2α

2( 13 + α2)
. (55)

Then, from (50) and keeping into account of (55), we have

c1 = 2− c2 = 1−
1
2 − 2α

2( 13 + α2)
. (56)

Then, from (52) and keeping into account of (54), we have

b32 =
1

b21
(−1

6
+ α− α2) =

1
2 − 2α
1
3 + α2

(−1

6
+ α− α2). (57)

and then, the value of b31 is obtained from (51) keeping into account of (54) and (57), i.e.,

b31 = b21 + α− b32 =
−α2 + 1

2α+ 1
3

1
2 − 2α

−
( 1

2 − 2α
1
3 + α2

(−1

6
+ α− α2)

)
. (58)

5.3 Values of α for stability

In this subsection we determine the value of α to have an A-stable method of order three. Let us consider
the scalar problem (23), we write the semi-implicit Runge-Kutta method, with the coefficients determined
as in the previous subsection, as

un+1 = R(z)un,

and we want that the function R(z) is an A-acceptable (A-stable) approximation of the third order of ez,
i.e.,

ez = R(z) +O(z4),

and |R(z)| ≤ 1 for ℜ(z) ≤ 0.
We have (see (42) with (43), (45) and see (30))

R(z) ≡ P (z)

Q(z)
=

1 + (1− 3α)z + (3α2 − 3α+ 1
2 )z

2 + (−α3 + 3α2 − 3
2α+ 1

6 )z
3

(1− αz)3
.

It is straightforward to show that |R(z)| ≤ 1 for ℜ(z) = 0 and since |R(z)| is analytic in ℜ(z) ≤ 0, it is
concluded that |R(z)| ≤ 1 for ℜ(z) ≤ 0 due to the maximum modulus theorem (e.g., [3, §16.17]).
Set z = ξ + iη, we choose the values of α in order to have R(iη) strictly bounded in modulus by 1, i.e.,

|R(iη)| < 1.

Then,

R(iη) =
1 + i(1− 3α)η − (3α2 − 3α+ 1

2 )η
2 + i(α3 − 3α2 + 3

2α− 1
6 )η

3

1− i3αη − 3α2η2 + iα3η3

=
[1− (3α2 − 3α+ 1

2 )η
2] + i[(1− 3α)η + (α3 − 3α2 + 3

2α− 1
6 )η

3]

(1− 3α2η2)− i(3αη − α3η3)
.

16



Thus, we can obtain

|R(iη)|2 =
[1− (3α2 − 3α+ 1

2 )η
2]2 + [(1− 3α)η + (α3 − 3α2 + 3

2α− 1
6 )η

3]2

(1− 3α2η2)2 + (3αη − α3η3)2

=
1

1 + 3α2η2 + 3α4η4 + α6η6

[
1 + 3α2η2 + (3α4 + 2α3 − 3α2 + α− 1

12
)η4+ (59)

+(α3 − 3α2 +
3

2
α− 1

6
)2η6

]
.

For α = 1 we have |R(iη)| < 1 then, R(z) is an A-acceptable approximation of ez.
Thus, from (48) and (54)–(58), a three-stage semi-implicit Runge-Kutta method of order three and A-
stable is given by the coefficients

α = 1; b21 = −8/9; b31 = −11/144; b32 = 3/16;

c1 = 7/16; c2 = 25/16; c3 = −1.

Now, we require that R(z) is a third order, L-acceptable (L-stable) approximation of ez. Then, we
have to choose the parameter α in such a way that the coefficient of z3 of P (z) is equal to zero.
From (45) we should have for positive values of α

−(α3 − 3α2 +
3

2
α− 1

6
) = 0. (60)

Formula (60) is the condition for the L-stability of the method.
This last equation can be written in the form

−α3

(
1− 3

1

α
+

3

2

(
1

α

)2

− 1

6

(
1

α

)3
)

= 0.

Since L3(x) = 1 − 3x + 3/2x2 − 1/6x3 is the Laguerre orthogonal polynomial of third degree (e.g., see
[17, p. 39]), we have to choose the parameter α equal to the reciprocal of a zero of this polynomial.
Among the three zeros of the Laguerre polynomial L3(x) we choose the one such that the condition
|R(iη)| < 1 is satisfied.
From formula (59) we have

|R(iη)|2 =
1 + 3α2η2 + (3α4 + 2α3 − 3α2 + α− 1

12 )η
4 + (α3 − 3α2 + 3

2α− 1
6 )

2η6

1 + 3α2η2 + 3α4η4 + α6η6
.

If 1/α is a zero of Laguerre polynomial, then the coefficient of η6 of the numerator is equal to zero.
In order that |R(iη)|2 < 1, the coefficient of η4 of the numerator should be less than the one of the
denominator; that is

3α4 + 2α3 − 3α2 + α− 1

12
< 3α4,

or,

2α3 − 3α2 + α− 1

12
< 0. (61)

Since the L-stability condition (60) holds, we have

α3 = 3α2 − 3

2
α+

1

6
.

By replacing the value of α3 of the last formula in (61), we have

2(3α2 − 3

2
α+

1

6
)− 3α2 + α− 1

12
< 0,
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that is

3α2 − 2α+
1

4
< 0.

This last inequality is satisfied for values of α in the interval (1/6, 1/2).
The roots of Laguerre polynomial of third degree L3(x) are

x1 = 0.415774... x2 = 2.294280... x3 = 6.289945

Then, the value for α is

α =
1

x2
= 0.4358665216...

Thus, from (48) and (54)–(58), a three-stage semi-implicit Runge-Kutta method of order three and L-
stable is given by the coefficients:

α = 0.4358665216; b21 = (
1

3
+ α2)/(

1

2
− 2α);

c3 = −1; c2 = 1 +
1

2b21
; c1 = 2− c2;

b32 =
1

b21
(−1

6
+ α− α2); b31 = b21 + α− b32.

5.4 A fourth order semi-implicit method of Bui

We include, here, a subsection where we recall a forth order, four-stage semi-implicit Runge-Kutta method
presented in the papers [4] and [6] (see also [5]), where the coefficients are deduced as in the previous
subsections for the three-stage semi-implicit Runge-Kutta method.
The method is defined by the following set of parameters:

α = 0.5728160625; b21 = −0.5;

b31 = −0.1012236115; b32 = 0.9762236115;

b41 = −0.3922096763; b42 = 0.7151140251; b43 = 0.1430371625;

c1 = 0.9451564786; c2 = 0.341323172; c3 = 0.5655139575; c4 = −0.8519936081.
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6 Some other semi-implicit Runge-Kutta method

The q−stage semi-implicit Runge-Kutta formulae (3)–(4) compute the solution towards the solution of q
linear systems (each of order m) while the (fully) implicit Runge-Kutta methods8 need the solution of q
nonlinear systems (each of order m). Thus the semi-implicit Runge-Kutta methods are linearly implicit.
The methods that avoid the solution of nonlinear systems and replace a sequence of linear systems are
referred as linearly implicit Runge-Kutta methods:9 the diagonally implicit Runge-Kutta (DIRK) methods
(e.g., [11, p. 261]),10 the singly-implicit Runge-Kutta (SIRK) methods ([7], [9], see e.g., [11, p. 266])
implemented in the software STRIDE ([8]), and the DESIRE methods ([12]) belong to this category of
methods. These methods are referred in [11] as implementable implicit Runge-Kutta methods.
Furthermore, the Rosenbrock formulae can be considered as a multiderivative method (e.g., [11, p. 90])
or as a replacing of Newton iteration for the solution of the nonlinear systems arising when we apply an
implicit Runge-Kutta method (e.g., [11, p. 120]).
We see also report that in [18, Chapt. 9] and in [19, Chapt IV.7], the Rosenbrock formulae are defined
as follows:

un+1 = un + h

q∑
j=1

cjKj , (62)

and Kj has the expression

Kj = f(un + h

j−1∑
i=1

bjiKi) + hJ(un)

j∑
i=1

γjiKi; j = 1, ..., q. (63)

These formulae are equal to (3)–(4) when γij = 0, i = 1, ..., j − 1 and j = 1, ...q (γjj = αj) and βij = 0,
i = 1, ..., j − 1 and j = 1, ...q.
It is worthwhile to mention that codes implementing Rosenbrock formulae (62)–(63) are RODAS, RO-
DAS5 and ROS4 (see [19, p. 143]) and RODAS3 and ROS3 ([29]).
In the following, we recall the formulae of two semi-implicit Runge-Kutta methods of order three which
are A-stable and L-stable.

6.1 Method of Caillaud and Padmanabhan

In [13], the authors consider the three-stage Runge-Kutta method

un+1 = un + h
3∑

j=1

cjKj ,

where the terms Ki, i = 1, ..., 3, are formulated as follows

K1 = (I − αhJ(un))
−1f(un);

8The implicit Runge-Kutta methods are defined by formula (3) where the terms Kj , j = 1, ..., q, have the form (e.g.
[10, §34])

Kj = f(un + h

q∑
i=1

bjiKi),

9Earlier names for methods in this general class are the semi-explicit methods ([22]) or semi-implicit Runge-Kutta
methods ([15]). There is a wide literature on these methods (see, e.g. [10]), even engineering literature and especially
chemical engineering since the Sixties (e.g., [2], [13], [16], [25], [27]). A recent paper on semi-implicit Runge-Kutta methods
for chemical kinetics differential systems is, e.g., [28].

10The DIRK methods are defined by formula (3) where the terms Kj , j = 1, ..., q, have the form

Kj = f(un + h

j∑
i=1

bjiKi),

We can easily observe that the Rosenbrock method (3)–(4) can be considered as a linearization of the diagonally implicit
procedure. The DIRK methods do not require equal coefficient bjj ; the methods where the coefficients bjj are equal are
called singly diagonally implicit Runge-Kutta (SDIRK) methods.
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K2 = (I − αhJ(un))
−1f(un + hb21K1);

K3 = (I − αhJ(un))
−1J(un)(hb31K1 + hb32K2).

By proceeding as in Section 2 or as in [13], this method has order 3 if the following conditions are satisfied

c1 + c2 = 1;

c1α+ c2(b21 + α) + c3(b31 + b32) =
1

2
;

c1α
2 + c2(2αb21 + α2) + c3(2α(b31 + b32) + b32b21) =

1

6
;

c2
b221
2

=
1

6
.

This method is referred in [13] as ISI3.
If we choose the parameter α as the inverse of the root of the Laguerre orthogonal polynomial of third
degree x2 = 2.2942803597, i.e.,

α = 0.4358665216

and the coefficients11

b21 =
3

4
; b32 =

4

3
(
1

6
+ α2 − α); b31 =

1

18
− α− b32;

c1 =
11

27
; c2 =

16

27
; c3 = 1.

it can be shown following the previous sections that the method (referred in [13] as ISI3(−∞)) is A-stable
and L-stable (see also [21] for L-stability).

6.2 A third order semi-implicit method of Bui

An A-stable and L-stable, third order, three-stage semi-implicit Runge-Kutta method has been introduced
by Bui in [5], where the coefficients have the following expression:

α = 0.4358665216; b21 = −0.5096436824;

b31 = 0.3270258661; b32 = 0.3108847731;

c1 = 0; c2 = 0.5; c3 = 0.5.

This method has been investigated by Alexander ([1]) as a DIRK method.

11The authors considered c3 = 1 and added the equation c2b321 = 1/4 obtained in such a way that the term of h4f(un)
vanishes.
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