
Development of reduced and optimized reaction
mechanisms based on genetic algorithms and element

flux analysis

Federico Perinia,∗, Jessica L. Brakorab, Rolf D. Reitzb, Giuseppe Cantorea

aDipartimento di Ingegneria Meccanica e Civile, Università di Modena e Reggio Emilia,
Modena, Italy

bEngine Research Center, University of Wisconsin–Madison, Madison, 53706, USA

Abstract

The present paper introduces an approach for the automatic develop-
ment of reduced reaction mechanisms for hydrocarbon combustion. An it-
erative reduction procedure is adopted with the aim of gradually reducing
the number of species involved in the mechanism, while still maintaining its
predictiveness in terms of not only ignition delay times, but also the time
evolution of important species. In particular, a global error function is de-
fined taking into account a set of 18 ignition delay calculations at different,
engine-relevant, initial mixture compositions, temperatures and pressures.
The choice of the species to be deleted is performed exploiting the element
flux analysis method, first introduced by Revel et al.; when a global error
function of the reduced mechanism exceeds the required accuracy, the colli-
sion frequencies and activation energies of selected reactions are corrected by
means of a GA-based code. The procedure is repeated until the lowest num-
ber of species at the required global error tolerance is achieved. The method-
ology is applied to a detailed mechanism of ethanol combustion consisting of
58 species and 383 reactions to produce an optimal reduced mechanism of 33
species and 155 reactions.
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1. Introduction

The need for complete understanding of the physics and chemistry of
combustion phenomena, together with constant progress in computer tech-
nology, is currently driving research into adopting full or detailed reaction
mechanisms in CFD computations [1, 2]. A wide variety of mechanisms has
been developed in recent years for hydrocarbon fuels consisting of tens to
hundreds of species and hundreds to thousands of reactions [3–11]. However,
mechanism reduction is still mandatory for most practical computations, and
research is very active in identifying techniques for obtaining accurate esti-
mates of reaction kinetics with limited computational needs. For example,
research for new combustion concepts for internal combustion engines (such
as HCCI, homogeneous-charge compression ignition and RCCI, reactivity-
controlled compression ignition) has been made possible in recent years by
the adoption of CFD codes which are capable of computing complete reac-
tion mechanisms [12, 13], as current pollutant regulations are leading to an
increasing need for accurate predictions of the spatial distribution and time
evolution of species within the combustion chamber. However, the adoption
of full or detailed reaction mechanisms in multi-dimensional studies is still
too computationally demanding, and the development of accurate reduced
mechanisms is of fundamental importance for maintaining the predictive ca-
pabilities of the simulations.

1.1. Literature review
A number of techniques have been developed for analyzing detailed com-

bustion mechanisms, and then identifying sets of species and reactions which
may be unimportant at certain reacting conditions. These methodologies
have been exploited for both the generation of skeletal, reduced mechanisms
[14–19], and for accelerating the computation of chemical kinetics during
CFD simulations [20–23]. A first class of methods involves the selection of a
subset of species and reactions from the detailed mechanism. Among them
are sensitivity analysis [24, 25], Directed Relation Graph (DRG) [26], even
with error propagation control (DRGEP) [27], principal component analysis
(PCA) [28, 29], element flux analysis (EF) [16, 21, 30], single- and multi-
objective optimization [15, 17, 18, 31–36]. A second category involves instead
techniques aiming at identifying and separating the different timescales act-
ing at the same time. This allows one to solve part of the reacting system
in terms of algebraic equations, or eventually to reduce its stiffness. Besides
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the classical quasi steady-state (QSS) and partial equilibrium approximations
(PE) [37–39], and computational singular perturbation (CSP) [40, 41], which,
allowing fast and slow time scales analysis, has extensively been used also
for generation of reduced and skeletal mechanisms [42–45], other methodolo-
gies have been recently developed, such as intrinsic, trajectory-generated,
constraint-defined low-dimensional manifolds (ILDM, TGLDM, CDLDM)
[46–48], rate-controlled constrained equilibrium (RCCE) [49, 50], invariant
manifold methods (MIM) [51], and invariant constrained equilibrium edge
preimage curve method (ICE-PIC) [52]. In the minimal-curvature-trajectory
based approach, an optimization procedure is adopted for the generation of
optimal low-dimensional manifolds or 1D trajectories [53]. The reduction and
optimization method proposed in the present paper aims at the generation
of reduced reaction mechanisms for hydrocarbon combustion which are able
to capture ignition delay times over broad validity ranges, defined by engine-
relevant conditions. In this case, the optimization procedure is not meant
to reduce the number of species, but to optimize the reaction rate constants
for selected reactions, ranging within the degree of uncertainty retrieved in
literature data of the elementary reactions involved, especially for high order
hydrocarbons. In particular, the most noticeable example of an optimized
reaction mechanism is the GRI-mech for methane and hydrogen combus-
tion [54, 55]. An automated optimization methodology for the reaction rate
parameters has been proposed and applied by Elliot and coworkers to a re-
action mechanism for an aviation fuel [17, 34, 56]. A novel approach was
proposed for overcoming two possible issues arising during reduced mecha-
nism preparation: on the one hand, the need for reducing as much as possible
the dimensions of the mechanism may lead to unacceptable errors in the pre-
diction of combustion profiles, especially as far as low temperature chemistry
is concerned, thus leading to inaccurate predictions of ignition delay periods.
The engineering strategy of fitting parameters to produce computationally-
efficient extremely reduced one- or two-step schemes [57–59], also may be not
suitable to model the combustion behaviour of complex and multicomponent
fuels, and the consequent pollutant formation in practical combustion sys-
tems. On the other hand, mechanism optimization for a huge number of
reaction rate parameters may require long computational times for reaching
the optimum mechanism configuration.
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1.2. Aim of the present work.
In this work a mechanism reduction and optimization procedure is set up

to generate a skeletal mechanism of smaller size, which is still capable of giv-
ing detail at both low- and high-temperature chemistry, as well as at a broad
range of pressures. This is meant to allow simulations of practical interest,
such as regarding internal combustion engines, to be carried out including
reliable chemistry in reduced computational times. The proposed methodol-
ogy features an iterative algorithm, which carries out a progressive reduction
in the number of species from the full mechanism, and the optimization of
the relative reaction rate parameters at each iteration. It is shown that this
procedure allows optimizations based on genetic algorithms (GA) to be per-
formed under a rather limited number of merit function evaluations with
fairly good results. The iterative procedure stops as soon as the reduced and
optimized mechanism is not able to fit the requested error tolerances. The
“optimum” solution identified at the end of the procedure is not simply the
reduced mechanism which best fits the behaviour of the full one. Instead, a
two-step optimization has been considered. The first step assures that the
transient behaviour of the reduced mechanism fits the behaviour of the full
one. The second step “optimizes” reaction rates, chosen within their own un-
certainty ranges, to ensure that the final reduced mechanism best represents
measured fuel oxidation behaviour through comparison with experimental
data available in the literature. The second step is performed to account for
uncertainties that are inherent in the full mechanism due to reaction rate
estimations used on many of the reactions for which experimental data were
not available. As an example, the procedure is applied to a well established
mechanism for ethanol combustion, showing good reliability of the method-
ology, and the applicability of the reduced and optimized mechanism to cases
of engine-like conditions.
In the following paragraphs, the reduction and optimization methodology is
presented, together with its implementation in the iterative algorithm. De-
tails are given on the development of a single-objective, GA-based optimizer
for the calibration of the reaction rate parameters, and on the adoption of a
suitable merit function formulation. Then, the aspects of the application of
this procedure to the generation of a reduced mechanism for ethanol oxida-
tion are presented and discussed. Finally, the results show the applicability
of the reduced mechanism to both ignition delay predictions and engine sim-
ulations.
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2. Methodology

The methodology herein proposed aims at generating a comprehensive re-
duced mechanism which is able, while considering the major reaction paths,
to predict accurate combustion profiles at a variety of engine-relevant condi-
tions. However, simply reducing the number of species and the reactions in-
volving them can lead to inaccurate predictions of reduced combustion mech-
anisms, due to the lack of resolution in the representation of low-temperature
chemistry [1]. Furthermore, sometimes the detailed mechanisms themselves
are validated for limited ranges of pressures, temperatures and equivalence
ratios, and their predictive capability can be weaker when simulating many
practical combustion systems in which broad ranges of operating conditions
are observed.

2.1. Mechanism reduction through an iterative procedure.
For these reasons, the present approach relies on the generation of a re-

duced combustion mechanism starting from an already established, detailed
one. Then, as the number of species and reactions is reduced, the progressive
loss of accuracy due to the elimination of the less important reaction paths
needs to be compensated for. This can be accomplished by correcting the
collision frequencies and activation energies of the reactions involving such
hydrocarbons. This operation is not meant to generate artificial, unphysical
reaction rates. Thus, the allowed ranges of variation of the reaction rate
parameters were commensurate with the uncertainty associated with them
in the literature. The aim is to account for the effects of the reaction paths
which have been deleted in the surviving reactions. Thus, after analysis of the
data in the NIST kinetics database [60], valid ranges for allowed variations
of the Arrhenius parameters during the correction process were limited to
±15% for the activation energy, and ±80% for the collision frequency value.
An iterative procedure was established, ruled by an error function formu-
lation, which quantifies the deviation of the reduced mechanism from the
detailed one. This kind of procedure can easily be automated, as all of its
steps can be defined through analytical formulas and logical operators. The
details of this procedure are represented in the form of a flow chart in Figure
1, while the methods defined and adopted for the mechanism reduction and
optimization are discussed in the following paragraphs. In particular, a de-
sired error tolerance for the reduced mechanism needs to be set. The iterative
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procedure then starts from a first reduction in the number of species and re-
actions, with a high cut-off value for species deletion, so that a high number
of species is retained in the reduced mechanism. Next, an error function is
evaluated to check whether the reduced mechanism still behaves within the
requested tolerance. In this case, the cutoff value is further reduced, so that
a greater number of species – together with the reactions involving them –
can be deleted from the mechanism. This progressive reduction of the dimen-
sions of the reduced mechanism is continued until the error function value
exceeds the maximum tolerance allowed. In this case, the reduced mecha-
nism is corrected through the optimization of the Arrhenius parameters so
that the effects of the reaction paths progressively excluded from it can be
accounted for in the selected reactions from the remaining scheme. In case
the optimum solution still fits the error tolerance requirements, a further
reduction step can be pursued. Otherwise, the procedure restores the latest
valid mechanism configuration.
Once these steps are completed, a reduced mechanism is generated, which
behaves consistently with the detailed one. Then, the performance of the
mechanism is compared to available experimental data, in order to have it
fit the desired range of temperature and pressures. For this purpose a sec-
ondary optimization is carried out and a different error function formulation
is adopted for quantifying the mean squared error, shown in terms of ignition
delay predictions, and compared to available sets of experimental ignition de-
lay measurements.

2.2. Definition of an error function for the reduced mechanism.
The definition of the error function for estimating the global error in-

troduced in a reaction mechanism due to the elimination of less important
species and reactions is mandatory, since the effectiveness of this indicator
affects not only the possibility of finding the optimum reduced mechanism,
but also the efficiency of the algorithms chosen for the mechanism reduction
and optimization. In particular, some observations have been posed that
define the requirements for the error formulation:

• The function should cover a broad range of operating conditions, as
the reduction and optimization process aims at generating a mecha-
nism which is valid over the broadest range of conditions occurring in
practical combustion systems, and in particular in internal combustion
engines. Particular relevance needs to be posed on lean conditions and
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Figure 1: Flow chart of the procedure for mechanism reduction and optimization.
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low temperatures, as it is acknowledged that the generation of reduced
mechanisms affects low-temperature chemistry [1];

• The function should not vary by many orders of magnitude: genetic
algorithms based on fitness-proportionate selection rely on the assump-
tion that, when creating a new generation of individuals, the probability
an individual has to be selected for reproduction is proportional to its
fitness value. Thus, in case the best individual has a fitness value much
higher than the others, it is likely that most of the next generation will
be made with its chromosomes only, so that most of the genome of the
previous generations are lost;

• The formulation of the error function should be valid both during the
mechanism reduction procedure, and during the optimization phase. In
the first case, the independent variables of the problem are binary, as
they can be represented as the presence or absence of any reaction in the
reduced mechanism. On the other hand, in the optimization problem
all of the Arrhenius parameters can vary within a continuous validity
range. Thus, the error function should not explicitly rely on these
parameters, but should instead involve the actual physical behaviour
of the mechanism.

As a reference for building an error function the formulation proposed by
Elliot et al. [32] was chosen:

f =

{
10−8 +

nc∑
j=1

ns∑
k=1

Wk

∣∣Xcalc
jk −Xorig

jk

∣∣
Xorig
jk

}−1
. (1)

In equation 1, a merit value for a modified mechanism is expressed through
the comparison to the reference one. The merit value is higher as the model
error is reduced. In order to estimate the model error, a sum of relative
errors is made, which compares the final molar fractions X of all the ns
species in the mechanism after constant volume simulations over a set nc of
initial reactor conditions.
This formulation has proven to be suitable for the optimization of combustion
mechanisms of large hydrocarbons [17, 34]. Moreover, it is able to account for
important or unimportant species through a weighting factor Wk; however,
it is not designed to take into account the time evolution of the species, and
its value may be misleading in this case, where the optimization focuses not
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only on the ignition delay time, but on the overall behaviour of the reduced
mechanism. For this reason, it has been modified, and improved as follows:

f = − log

10−8 +
1

nc (1 +
∑

kWk)

nc∑
j=1

 ns∑
k=1

∫ τ=tj

τ=0
Wk

∣∣∣Xfull
jk (τ)−Xred

jk (τ)
∣∣∣

Xfull
jk (τ)

dτ+

+

∫ τ=tj

τ=0

∣∣∣T fullj (τ)− T redj (τ)
∣∣∣

T fullj (τ)
dτ

. (2)

In particular, a total integration time tj is defined for each of the reactor operating
conditions, and needs to be estimated a priori; it has been chosen to add up to
1.5 times the mixture ignition delay period at the current conditions. Thus, the
relative error from the comparison between the full and the reduced mechanisms
is numerically integrated over the whole simulated time, for each of the nc cases.
A total of one thousand sampling points for the numerical integration was found
to perform well. The weighting factor Wk is used not to give different weights to
the species, but instead as a binary selector for the species to either be included
or not in the error function computation. Furthermore, an error analysis on tem-
perature profiles Tj has been added similar to the approach proposed by Banerjee
and Ierapetritou [18], as global heat release is one of the key quantities for defin-
ing the effectiveness of the reaction mechanism. Finally, the logarithm operator is
considered, as the error function derived from the integration of the relative errors
of the species profiles can vary many orders of magnitude. Applying the logarithm
implies that the resulting values of f remain of the order of unity and thus are
particularly suitable for GA-based optimization.
The choice of the operating conditions to be simulated for defining the reduced
model’s error function is problem-dependent. However, the whole set is intended
to cover the range of operating points that the mechanism is developed for. The
choice of a small number of points, or of a narrow space will eventually lead to a
mechanism with a limited validity range. More details for the 18 operating points
chosen in the present analysis for the ethanol combustion mechanism are given in
the following.
Finally, the following set of species to be monitored has been assumed:

Ns = {fuel, O2, OH,HO2} . (3)

Apart from fuel and oxidizer, OH and HO2 radicals have been chosen due to their
well acknowledged importance in slow hydrocarbon oxidation and ignition delay
timing [61, 62]. Despite the possibility to consider the whole set of species in the
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reduced mechanism, the choice to keep a unique species kernel for the error cost
function has been adopted for assuring consistency of the results of the reduction
procedure over various mechanism sizes; also, this allowed to focus on the ignition
characteristics of the mechanism, as wider subsets would have eventually led to
give importance to species which were likely to be removed during the next steps
of the reduction procedure.
Finally, this general formulation of the merit function would allow the same ap-
proach to be also applied to a spatial distribution more than a time integration, for
instance in case some experimental measurements of laminar flames are available
in terms of temperature and species mass fraction profiles. However, the sensitivity
of these computations to the initial conditions makes this approach less suitable
to an automatic casefile generation as required by a genetic-algorithm-based opti-
mization.

2.3. Species reduction through element flux analysis (EF).
Among the methodologies for the analysis of species activity in reaction mech-

anisms, Element flux analysis (EF) is based on the assumption that the instan-
taneous reactivity of the species across all the reactions can be quantified by the
fluxes of atoms of selected elements. This method, first introduced by Revel et
al. in 1994 [30], has also been proposed by Androulakis et al. [16] as a tool for
identifying the the contributions of species in detailed reaction mechanisms over
an integrated time interval. More recently, He, Ierapetritou and Androulakis have
improved the methodology and shown the potential of this approach as an efficient
pointer for quantifying the instantaneous reactivity of the species. In some recent
papers, [14, 21, 22] they have adopted element flux analysis to identify reaction
pathways, and to develop reduced mechanisms on-the-fly both in batch reactor
and in CFD combustion simulations.
The core of the EF analysis is the definition of an instantaneous flux pointer Ȧijk,
which quantifies the flux of atom A, in the i-th reaction, from the species with
index j to the one with index k:

Ȧijk (t) = (|qf,i(t)|+ |qb,i(t)|)
nA,j nA,k
NA,i

, (4)

where nA,j represents the number of atoms of element A in species j, and NA,i the
total number of atoms of the element involved in the whole reaction i. He et al.
have improved the original formulation by Revel et al. by explicitly separating the
original term for the reaction progress variable, qi, into the sum of two absolute
values, cumulatively accounting for the forward and backward atom fluxes within
the same reaction. This assumption is motivated by the need to prevent the atom
fluxes of reactions near equilibrium from being evaluated as negligible.
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In our approach, the element flux analysis is the basis for mechanism reduction,
as it is meant to provide an index of the importance the species play across the
whole ranges of validity the mechanism is intended for. Thus, the concept of flux
time-integration introduced by Androulakis et al. [16] has been modified into:

Ajk =

nc∑
c=1

{∫ τ=tc

τ=0

[
nr∑
i=1

Ȧijk,c(τ)

]
dτ

}
; (5)

the overall flux indicator Ajk, for the species source-sink pair (j, k), is thus nu-
merically integrated over the simulated time, and summed over the whole set of
mechanism operating points nc chosen for defining its desired validity range. The
total flux of element A exchanged during the whole set of simulations is evaluated
taking into account all the possible source-sink pairs, represented by the cartesian
product of the species array with itself:

At =
∑

j,k∈Ns×Ns

Ajk. (6)

The species selection is then made upon the analysis of the contribution of the
element fluxes Ajk to the total flux At. The element fluxes are first sorted in
decreasing order, and a cut-off value c ∈ [0.0, 1.0] represents the fraction of to-
tal element flux chosen to be accounted for in the reduced mechanism. Only the
species involved in the fluxes at the first n positions of the sorted flux array, n
defined as the minimum number of positions for which the cumulative sum of their
values reaches the total flux threshold, is retained in the reduced mechanism.
As an example to clarify this assumption, in Figure 2 the results of the EF analysis
performed on an ethanol combustion mechanism [8] – used as a test in the present
study – are presented. The sum of the element fluxes for carbon and oxygen atoms
are plotted for each of the species contributing to the cutoff value. The values are
normalised against the sum of the total exchanged element fluxes, as in Eq. 6.
The figure shows that the species which participate less to the total element fluxes
are more likely to be deleted, as the cutoff value is decreased. For example, in the
figure two different cutoffs – 99.9% and 99.0% of the total amount, respectively –
are compared. The resulting selected numbers of species, having positive normal-
ized contribution to the element flux, adds up to ns = 55 and ns = 50. A fixed
contribution, equal to 1.0, is set to the whole set of species of the O-H system,
which is assumed to always be present in every reduced combustion mechanism.

In the present mechanism reduction procedure, as illustrated in Figure 1, the
EF analysis is called at each iterative step with a different cutoff value, in order
to achieve the progressive deletion of the less important species. The initial cutoff
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Figure 2: Species selection through EF analysis for an ethanol combustion mechanism [8]:
normalized cumulative fluxes for carbon and oxygen atoms over 18 operating conditions.
Cut-off values: c = 0.999 and c = 0.990.

value is set at c = 99.9%, and at each following step it is decreased following a
power law: c(n + 1) = c(n)1.1. This choice is motivated by the fact that, during
the first optimization steps, the reduced mechanism still consists of a huge number
of reactions: the number of variables to be optimized is high, thus either requiring
unacceptably high computational times to carry on the optimization, or leading to
a non negligible probability that the GA-based optimizer will not find the optimum
solution in case a limited numbers of evolutionary steps and a narrow population
size is considered.

2.4. Mechanism correction: GA-based optimization.
2.4.1. Genetic algorithms and chemical kinetics.

The adoption of genetic algorithms for efficient single- and multiple-objective
optimization is appealing, due to its effectiveness in getting the solution of the opti-
mization problem, and the relatively small number of function evaluations required
[63]. There is evidence in the literature concerning the use of genetic algorithms
for the development of combustion mechanisms. GA has been used for the genera-
tion of reduced combustion mechanisms setting an optimization problem to be the
choice of species and reactions [15, 64]: Banerjee and Ierapetritou [18] for example
show the effectiveness of the genetic algorithm in choosing a reduced set of species
and reactions from a detailed mechanism, exploiting the binary representation of
chromosomes in the evolutionary algorithm, which allows the presence or absence of
an item of the original set to be represented throughout the two possible instances –
namely 0, or 1 – of its corresponding allele. Reduced mechanisms achieved through

12



this approach can reach very small dimensions, even if their validity range is lim-
ited, and thus a set of reduced mechanisms may be needed for covering the range
of operating conditions in practical combustion systems. The method has been
used for the development of a unique reduced mechanism, for example when ap-
plied to HCCI engine multidimensional simulations. Montgomery et al. [65] have
shown that the integration of GA-based optimization into the selection of quasi-
steady-state (QSS) species can dramatically improve the procedure. Furthermore,
application of the GA technique in terms of reduction in the number of reactions
for the development of reduced mechanisms for engine-relevant conditions has been
shown to be viable for reductions in the dimension of the original mechanism [66].
A second possible application of GA-based optimization is in the search for optimal
values of reaction rates. Among the first examples of this second approach, Hamos-
fakidis and Reitz adopted a genetic algorithm for calibrating a simplified ignition
model for a diesel fuel surrogate [67]. In this work, the optimization featured a
total of 26 independent variables, and an impressive improvement in the ignition
model performance was achieved over a broad range of operating conditions. As
far as full combustion mechanisms are concerned, an extensive review on this ap-
proach is given by Elliott et al. [32]. They showed that the adoption of genetic
algorithms can be very efficient in tuning the reaction rate constants, as the large
number of variables involved makes this implementation more suitable than analyt-
ical optimization methods. Since most reaction rates for high-order reactions, such
those involving large hydrocarbons still are not well established, Elliot et al. [56]
suggested that the validity ranges for the independent variables should be chosen
to fit the degree of experimental uncertainty given by the data available for the
reaction. The most complete collection of reaction rates was provided by the NIST
kinetics database [60].
This methodology may require prohibitive CPU times for optimization of mecha-
nisms for large hydrocarbons, and the same authors have more recently developed
a novel approach, based on a two-step genetic optimization [17, 34]. In the first
step, the optimization aims at reducing the number of species. The chromosome is
a binary string with a number of alleles equal to the number of species in the full
mechanism. The total number of active species is kept fixed and equal to the num-
ber of species chosen for the reduced mechanism and the merit function is based on
the performance of the reduced mechanism, in comparison with the full one. Once
the reduced set of species is gathered, a second optimization step is carried out in
order to tune the Arrhenius reaction rate parameters, Ai, bi and Ei, i = 1, ..., ns.
In the present work, GA-based optimization is nested into the iterative procedure.
The reduction in the number of species is treated through the element flux analysis,
while the GA is run only for the calibration of the reaction rate parameters. As the
number of species is progressively reduced at each iteration, an optimization on the
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reaction rate parameters of the reduced mechanism is carried out, when the error
function of the reduced mechanism exceeds a desired tolerance value. This choice is
motivated by two reasons: the need for reducing the total computational time, and
the fact that our reduction and optimization approach is ruled by a constraint on
the performance of the reduced mechanism, aiming to get as few species as possible.

2.4.2. Optimization problem definition.
Forward reaction rates in common reaction mechanisms are mostly computed

according to the Arrhenius formulation, which features three parameters needed
for defining the behaviour of each reaction [68]:

kf,i = Ai T
bi exp

(
Ei
RT

)
, i ∈ {1, ..., nr} . (7)

In case the mechanism features more complex reactions, such as pressure-dependent
ones, more complex formulations are usually adopted; for example, in the CHEMKIN
library [69] the Troe and SRI forms are allowed [70, 71], in which two Arrhenius-
like reaction rates are defined at the low and high pressure limits, plus a number
of parameters are needed for computing the pressure-dependent behaviour. Lastly,
in practical combustion mechanisms, reverse reaction rate calculation through the
equilibrium theory is sometimes overridden by a further explicit Arrhenius-like for-
mulation, which adds three parameters to the reaction definition.
In this work, the optimization problem is approached defining a fixed number of in-
dependent variables, twice the number of reactions to be optimized. In particular,
only the collision frequency value Ai and the activation energy Ei are optimized.
The choice not to include the temperature exponent bi is motivated by the fact
that most temperature exponents in the reactions are zero [1].
Not all of the reactions in the combustion mechanism need to be tuned: as a matter
of fact, reaction rates for most of the reactions involving low-order schemes, such as
the elementary oxygen - hydrogen system are well established. For this reason, the
optimization problem is set not to address the reaction rate coefficients of reactions
involving only species within the following set:

Nbasic = {H,H2, O,O2, OH,H2O,HO2, H2O2, N2, CO,CO2} . (8)

The reaction rates of all reactions which involve at least one species not in the
set Nbasic are thus optimized. Two reaction rate parameters, Ai and Ei thus need
to be identified not only for elementary reactions with an Arrhenius formulation,
but also for reactions with an explicit reverse reaction rate expression, as well as
pressure dependent reactions. In the first case, assuming an explicit reverse rate
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expression leads to an ‘effective’ equilibrium constant which is different from the
value computed through minimization of the reaction free energy. In our approach,
no actions are taken in order to change this assumption, and, in case such a formu-
lation is found in a detailed mechanism, the independent variables still remain the
two forward reaction rate parameters; the explicit reverse reaction rate constants
are accordingly modified, in order to maintain the modified equilibrium constant
as arising from the original mechanism:

A′r,i = A0
r,iA

′
f,i/A

0
f,i; (9)

E′r,i = E0
r,i +

(
E′f,i − E0

f,i

)
. (10)

In the second case, two Arrhenius-like formulations describe the reaction rates at
the high and low pressure limits. The reaction rate parameters at the high pressure
limit are considered as independent variables for the optimization.
Once that a unique definition of the set of independent variables is obtained, the
allowed validity ranges of the variables need to be defined. In our approach, a fixed
validity interval is set for each of the variables, centered on the previous value from
the original mechanism, and with fixed width: Ai ∈

[
A0
i −∆Ai;A

0
i + ∆Ai

]
; Ei ∈[

E0
i −∆Ei;E

0
i + ∆Ei

]
. The two range bounds adopted during the optimizations

were εA = ∆Ai/Ai = 80% and εE = ∆Ei/Ei = 15%. The adoption of these
two average values was found after a comparison of experimental reaction rates
retrieved from the NIST chemical kinetics database [60]. The average uncertainty
ranges which affected reaction rates involving C1-C3 hydrocarbons were chosen as
a reference for fitting the optimization ranges. This choice is problem-dependent,
and has been motivated by the fact that the following optimization has been applied
to an Ethanol combustion mechanism which includes many hydrocarbon species
of those sizes. As an example, Figure 3 shows the comparison among different
values of the reaction rate parameters for the decomposition of propene into methyl
and vinyl radicals. Here, range bounds defined by the aforementioned delta are
applied to the values present in the ethanol combustion mechanism from Marinov
[8]. The two bands are able to correctly cover all the values reached by the other
formulations for the same reaction. It is clear that the choice of assuming average
validity intervals with fixed percentage allowance may not fit the data uncertainty
for each of the reactions, and that, in order to preserve the physical soundness
of this assumption, a further analysis would be required in case of mechanisms
featuring larger hydrocarbons or different species. Nevertheless, this procedure is
particularly suitable for implementation in an iterative algorithm, while detailed
estimation of these bounds for each of the reactions in the full mechanism would
need a large pre-processing effort, which is beyond the scope of the approach.
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Figure 3: Comparison among different forward reaction rate constant sets for reaction
C3H6 <=> CH3 + C2H3. Reaction data from LLNL ethanol combustion mechanism [8]
and NIST kinetics database [60].

In order to complete the definition of the optimization problem, once the func-
tion to be evaluated and the independent variables and their validity ranges have
been identified, the solver for the GA-based optimization needs to be set up as
described in the following paragraph.

2.4.3. The GA-based optimizer.
In order to carry out the optimization problem described above, a code for the

optimization of reaction rate constants was developed, based on an evolutionary al-
gorithm [72]. The optimizer features a single-objective, binary-coded genetic algo-
rithm, where an initial population of individuals is generated, and then let to evolve
for a number of generations following the principles of natural selection operators,
such as reproduction, mutation, and crossover. Each individual is represented by a
set of binary strings, namely chromosomes, which stand for the values of the inde-
pendent variables to be optimized. The binary representation implies thus that the
validity ranges of the variables have to be discretized into a finite number of divi-
sions. If the range is defined by the continuous interval [vmin, vmax], this is spanned
through chromosome instances ranging from vmin = 00...0 to vmax = 11...1, and
the total number of divisions, 2ng , is set by the number of digits – or genes –,
ng, of the chromosome itself. The total number of possible solutions (each of the
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variables has the same chromosome length) is thus given by 2ng ·nv , where nv is the
total number of variables. nv can add up to thousands. Thus, when optimising
reaction rate parameters, a three bit chromosome length ng = 3 has been chosen,
fixed for each variable, resulting in eight subdivisions of the validity interval. Each
chromosome is assigned a merit value, computed through the evaluation of the fit-
ness function, defined in Eq. 2, as a result of a set of constant pressure calculations.
Each new generation is evolved from the previous one as the three operators of the
genetic algorithm are applied. Fitness-proportionate selection of the individuals is
the main operator affecting reproduction. Each of the new individuals appearing in
the new generation has two parents, which are selected randomly from the previous
one. The random process is however biased, as the probability that each individual
is selected is proportional to its fitness value [63]. A mutation operator, occurring
after reproduction with a fixed probability, introduces new combinations in the
genotype by inverting a randomly chosen gene within the chromosome. Crossover
is a recombination operator which cuts the chromosomes of the two parents at a
random locus, and exchanges the two cut parts between them. In particular, the
iterative procedure adopted in the present GA for simulating the evolution of the
population can be schematised as follows:

1. Generation of the first population: Np individuals, consisting of randomly
generated chromosomes.

2. Evaluation of the fitness function for each of the individuals.
3. Fitness-proportionate selection of fR ·Np couples of individuals for reproduc-

tion.
4. Reproduction of the individuals: each chromosome randomly chosen from

one of the parents.
5. Possible occurrence of mutation and crossover, with pM and pC probabilities.
6. Substitution of the fR ·Np worse individuals with the newly generated ones.

Begin a new generation.
7. Evaluation of the fitness function for each of the new individuals.
8. Go to 3.

The parameters ruling the GA operation are summarized in Table 1. Most of the
parameters follow the guidelines suggested by Mitchell [63]. The GA is normally
iterated up to 50 to 500 generations; and the population size is made up of 5 to
50 individuals. An exception has been considered for the mutation probability,
which is to be kept very small (pM < 0.01). In this case, however, it is necessary
to introduce a high degree of randomness due to the fact that the population
size scarcely allows the whole variable space to be covered, and having a high
probability of mutation allows zones which are not present in the first generation
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to be gradually introduced during the optimization process. The reproduction
fraction is chosen at 90% as it is acknowledged that keeping only few, near-optimum
individuals from one generation to the next can improve the algorithm convergence;
crossover probability is the recommended value.

Parameter symbol value
number of individuals Np 75
number of generations Ng 200
chromosome length ng 3
reproduction fraction fR 0.90
mutation probability pM 0.60
crossover probability pC 0.35

Table 1: Parameters setting the genetic optimizer.

3. Results and discussion

3.1. Reduction of an Ethanol combustion mechanism
The methodology was tested through the development of a reduced mechanism

for ethanol oxidation. As a starting mechanism for the reduction and optimization
procedure, the mechanism developed by Marinov [8] was chosen. This mechanism
consists of 58 species and 383 reactions, and has been validated against experimen-
tal data for high temperature oxidation (T > 1000K). In order to test the reliability
of the reduction approach, a broader set of temperatures and equivalence ratios was
chosen to define the validity range of the new mechanism. In particular, cases of
interest to internal combustion engine simulations were chosen, resulting in a total
of 18 different initial conditions with pressure values p0 ∈ {2.0; 20.0} bar; mix-
ture equivalence ratios φ0 ∈ {0.5; 1.0; 2.0}; temperatures T0 ∈ {750; 1000; 1500}K.
This set of operating conditions was kept fixed during the whole reduction and
optimization procedure. Integration times for the constant pressure reactors were
found for each of the cases after proper analysis, and set equal to 1.5 times the
ignition delay period, where the ignition delay is defined as the time needed by the
system to reach a 200K increase in temperature. Each of the integration intervals
was then subdivided into a set of one thousand equally-spaced observation points
for the following evaluation of the accuracy of the reduced mechanisms.
The reduction and optimization algorithm was then run setting an error toler-
ance in terms of a merit function value. The condition for carrying out a further
reduction without the need for optimizing the Arrhenius parameters was set at
f > 3, corresponding to a cumulative relative error – summed over the 18 cases
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(hence, 18000 observation points) – to be less than 5.0e − 2. The second part
of the optimization, aimed at the calibration of the reduced mechanism against
experimental ignition delay measurements, was run instead considering a different
set of initial conditions, also spanning the range of available data. The measure-
ments by Curran et al. [73] were used for dilute ethanol oxidation at stoichiometric
equivalence ratio (C2H5OH = 2.5%, O2 = 7.5%), at three different pressure values
p0 = {2.0, 3.0, 4.5} bar. For each pressure level, 20 different initial temperature
conditions were considered, logarithmically spanning the range between 1100K
and 1500K. Furthermore, the merit function was defined using the reciprocal of
the global error, computed as the cumulative sum of the least squares comparisons
between the simulated and experimental data over the three pressure levels con-
sidered.

The last successful iteration of the algorithmic procedure generated a final re-
duced and optimized mechanism consisting of 33 species and 155 reactions. The
overall computational time required was of about 9 hours on a personal computer
running on a Core i7 860 CPU. The complete reaction scheme achieved is reported
in the appendix Appendix A. During the run, the algorithm performed a total of
9 mechanism reductions through element flux analysis, two genetic optimizations
for calibration on the original LLNL mechanism, and one GA-based optimization
for mechanism calibration against experimental ignition delay measurements. In
order to show the effectiveness of the methodology, the following comparisons con-
sider the three versions of the skeletal reaction mechanism at the last successful
reduction iteration, i.e. that considering a subset of 33 species and 155 reactions.
The first version of the skeletal mechanism (“R”) is the one generated after simple
shrinking of the LLNL mechanism to the subset of species selected through element
flux analysis; the second version (“RO”) is the one having optimized reaction rate
parameters after comparison with the detailed mechanism, according to the merit
function in Eq. 2; the last version (“ROO”) is that further optimized against the
experimental ignition delay measurements from Curran et al. [73]. The acronyms
adopted and the differences among them are summarized in Table 2.

Acronym ns nr details
LLNL 58 383 Marinov, 1999 [8]
R 33 155 EF-analysis reduced only
RO 33 155 Reduced and optimized against LLNL
ROO 33 155 RO optimized against Curran, 1992 data [73]

Table 2: Description of the starting ethanol oxidation mechanism, and of the three reduced
ones.
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Figure 4 shows the full comparison among mechanisms LLNL, R and RO at the
eighteen initial conditions considered. For the sake of simplicity only the tempera-
ture traces have been plotted, since they well represent the overall behaviour of the
mechanism. In particular, it is observed that the simple reduction in the number
of species through EF analysis cannot fit the broad range of operating conditions.
As a matter of fact, the behaviour of mechanism R is never similar to that of the
original mechanism, and it is closer to it only at low initial temperatures and low
pressures. The optimized mechanism RO provides similar behaviour to that of
the Livermore mechanism, where an excellent agreement is found especially at low
initial temperatures. Furthermore, the predictiveness of the mechanism seems not
to be affected by the change in pressure.
Figure 5 shows the history of the optimization ended in the generation of the RO
mechanism: the optimum individual has an overall merit value f = 18.532, while
the R mechanism, from which the GA-based optimization started, had f = 2.678;
the maximum in merit value having been found by the genetic optimizer at gen-
eration 197. Values for the Arrhenius parameters of collision frequencies and acti-
vation energies are in the optimum mechanism different for each reaction, except
for the set of reactions involving the basic species set as previously defined. In
order to compare the values of the optimized RO mechanism with those of the
reduced one, R, Figure 6 plots the relative variations of collision frequencies and
activation energies in terms of relative differences, εr(Ai) =

(
AROi −ARi

)
/ARi and

εr(Ei) =
(
EROi − ERi

)
/ERi . In particular, the variation in Arrhenius parameters

reached the bounds of the collision frequency for 27.7% of the reactions, and of
the activation energy for 10.2% of the reactions, showing that the optimum values
led to a new mechanism whose parameters were close to those of the original. The
average variation in the collision frequency was ∆A = 22.86%, and ∆E = 4.29%
the average variation in activation energies.

The results of the second optimization process are summarized in Figure 7.
The comparison between LLNL and RO mechanisms shows that both mechanisms
suffer a slight overestimation of the ignition delays especially at the lowest initial
temperature values. The generation of the ROO mechanism, optimized with the
available set of experimental data, plotted in Figure 7 b), shows that this overes-
timation is completely solved after the optimization procedure.

As far as the computational costs of the procedure are concerned, the two
contributions due to the iterative reduction procedure and due to the mechanism
optimization phases have been considered. As acknowledged [1], the ODE integra-
tion of chemically reacting systems scales as n3s, due to most computational time
being spent in evaluating the Jacobian matrix. Thus, the genetic optimization pro-
cedures have roughly been approximated as scaling with n3s,i, ns,i being the current
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Figure 4: Temperature profiles simulated at the 18 operating conditions chosen for ethanol
mechanism reduction. Comparison among LLNL, R and RO mechanisms.
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Figure 7: Comparison among predicted and experimental [73] ignition delays for dilute
stoichiometric ethanol-oxygen mixtures. a) Left: comparison between LLNL and RO
mechanisms; b) Right: comparison between LLNL and ROO mechanisms.

reaction mechanism size. The overall computational cost of the iterative procedure
then scales with the total number of reduction-and-optimization iterations. From
an analysis of the series of mechanism sizes as produced by the EF method, when
applying the power law for cut-off value modification previously explained, mecha-
nisms were seen to almost logarithmically decrease in size (as reported in Figure 8).
Thus, if the same final reduced mechanism size is referred to, the overall number
of iterations of the procedure roughly scales with log ns,1, ns,1 being the dimen-
sion of the starting full mechanism. Thus, the average computational cost of the
mechanism reduction and optimization methodology scales as n3s,1 log ns,1.

3.2. Application to HCCI engine simulations
As evidence of the predictive capability of the reduced mechanism, it was ap-

plied for modeling the combustion of an ethanol-air mixture in a HCCI-operated
internal combustion engine. The simulation model is a zero-dimensional, adia-
batic, single-cylinder HCCI research engine, with 14:1 compression ratio, running
at 1200 rpm. Detailed specifications of the slider-crank mechanism can be found
in [74]. Two baseline cases were considered, both at initial mixture equivalence
ratio φ = 0.4, and with different initial temperatures, T0 = 437K and T0 = 424K.
These reference conditions correspond to the Sandia experiments. Figures 9 and 10
show the comparison among the 4 mechanisms – namely, full Livermore (LLNL),
EF-reduced (R), reduced and optimized (RO), optimized against experimental ig-
nition delays (ROO) – in terms of pressure history, plus histories of the most
important species. Figure 9 shows good agreement between the full Livermore’s
mechanism and the reduced and optimized one, while the simple reduction based
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Figure 8: Reduction iterations for the Ethanol mechanism described in the following,
and comparison with fully logarithmic behaviour. Total number of acceptable reduced
mechanisms generated: 7.

on EF analysis fails to predict mixture ignition at these conditions. Concerning
the ROO mechanism, it shows slightly earlier mixture ignition, in agreement with
the results of the final optimization where the ignition delay predictions tended to
earlier ignition especially when starting from the lowest temperature values. Sim-
ilar behaviour is observed in the T0 = 424K case, as in Figure 10. Only the LLNL
mechanism shows a different behaviour across the two cases: it fails to predict
mixture ignition at the conditions with lower initial mixture temperature. The two
reduced and optimized mechanisms showed less dependence on the initial mixture
temperature, as the ignition delays predicted were consistent with those observed
in Figure 9.
Figure 11 displays the behaviour of the mechanisms when doubling the in-cylinder
pressure at intake valve closure. The same two initial temperature values as in
the baseline cases were considered. Here, all the mechanisms show consistent be-
haviour. The LLNL mechanism is able to predict ignition even at the lower initial
temperature, thus showing the mechanism’s sensitivity to pressure; the R mecha-
nism still is not able to predict ignition at both temperatures. In Figure 12, the first
baseline case (T0 = 437K) is operated with equivalence ratios leaner – φ0 = 0.25
– and richer – φ0 = 0.70 – than the original case. The same behaviour seen in
the two baseline cases is observed, proving that the mechanisms show less depen-
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Figure 9: Simulation of baseline case 1 for the HCCI Sandia engine [74]: φ0 = 0.40,
T0 = 437K.

dence on mixture composition than on temperature and pressure. Finally, Figure
13 shows the results of multidimensional simulations carried out using the KIVA-4
code [75] coupled with detailed chemistry. The simulations have again been carried
out using the four different mechanism versions, and compared with experimental
average in-cylinder pressure curves: while most mechanisms tend to fail predicting
mixture ignition, the ROO mechanism agrees well with the experiments at both
cases. The good agreement at the two baseline cases has been confirmed also when
sweeping the charge conditions at intake valve closing, as shown in Figure 14: the
comparison between KIVA4 calculations and experimental measurements featured
a set of in-cylinder pressure curves at varying boost pressure, and 50% total-heat-
release crank angle values (CA50) at varying intake mixture temperatures. The
results show that the reduced mechanism is able to correctly predict the combustion
behaviour also at a range of engine operating conditions.

25



-100 -50 0
0

1

2

3

4

5

6

7

8

9
x 10

6

CA [degrees ATDC]

p
re

ss
ur

e 
[P

a]

 

 

1 Detailed
2 Reduced only
3 Reduced optimized
4 Ignition delay optimized

-100 -50 0
0.000

0.005

0.010

0.015

0.020

0.025

0.030

CA [degrees ATDC]

et
h

an
ol

 m
ol

ar
 fr

ac
tio

n 
[-

]

 

 

1 Detailed
2 Reduced only
3 Reduced optimized
4 Ignition delay optimized

-100 -50 0
0.100

0.120

0.140

0.160

0.180

0.200

0.220

CA [degrees ATDC]

O
2 m

ol
ar

 f
ra

ct
io

n 
[-

]

 

 

1 Detailed
2 Reduced only
3 Reduced optimized
4 Ignition delay optimized

-100 -50 0
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

CA [degrees ATDC]

C
O

 m
o

la
r 

fr
ac

ti
on

 [
-]

 

 

1 Detailed
2 Reduced only
3 Reduced optimized
4 Ignition delay optimized

Figure 10: Simulation of baseline case 2 for the HCCI Sandia engine [74]: φ0 = 0.40,
T0 = 424K.
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Figure 11: Simulation of the HCCI cases with doubled IVC pressure; initial temperatures:
437K (left), 424K (right).
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Figure 12: Simulation of the baseline HCCI case 1 with modified mixture equivalence
ratios: φ = 0.25 (left) and φ = 0.70 (right).

1

2

3

4

5

6
x 10

6

P
re

ss
u

re
 [

P
a]

 
LLNL
R
RO
ROO
exp.

T
0
 = 434 K

p
0
 = 1.95 bar

φ0
 = 0.4

-40 -30 -20 -10 0 10 20 30 40 50
0

CA degs ATDC

 

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

6

P
re

ss
u

re
 [

P
a]

 
LLNL
R
RO
ROO
exp.

T
0
 = 425 K

p
0
 = 1.95 bar

φ0
 = 0.4

-40 -30 -20 -10 0 10 20 30 40
0

0.5

CA degs ATDC

 

Figure 13: Comparison between multidimensional simulations and experimental data
about the two baseline cases considered.
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Figure 14: Left: experimental vs. numerical comparison of CA50 at varying IVC mixture
temperatures. pIV C = 0.92bar, φ = 0.4. Right: Boost pressure sweep, from pIV C =
0.84bar to pIV C = 1.46bar. TIV C = 420K, φ = 0.4. Solid lines: experiments; dashed lines
and symbols: KIVA4 simulations.

4. Conclusions.

The adoption of detailed reaction mechanisms when analysing complex combus-
tion systems, such as internal combustion engines, is becoming mandatory due to
the need for accurate predictions not only in terms of overall heat release, but also
of kinetics-controlled phenomena such as low temperature chemistry and pollutant
formation. However, full mechanisms are still too computationally demanding for
practical CFD simulations, even with parallel computing systems. Thus, mecha-
nism reduction is still a viable approach, and this is particularly true when dealing
with mechanisms involving large hydrocarbons, where the size of the full reaction
system is often of the order of thousands reactions and species. However, simple
mechanism reduction where the reduced mechanism consists of a limited set of
reactions can lead to mechanisms with a limited validity range. The present ap-
proach for the reduction and optimization of detailed reaction mechanisms features
element-flux analysis to identify and select the number and the corresponding set
of species to retain in the reduced mechanism, and a single objective, binary coded
genetic algorithm optimizer for the calibration of select reaction rate parameters.
This procedure was included into an automatic algorithm which proceeds progres-
sively. The advantage of the iterative procedure is that the optimization is likely to
reach the optimum value even with a limited number of merit function evaluations,
when compared to the approach of including all possible values of the variables to
be optimized.
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The procedure was applied to the generation of a reduced mechanism for ethanol
oxidation, suitable for internal combustion engine simulations. Starting from the
full LLNL mechanism, it achieved a reduced mechanism consisting of 33 species
and 155 reactions. It is interesting to point out that agreed better with experiments
than the detailed LLNL mechanism. The mechanism validity range was kept as
broad as possible for use in internal combustion engine simulations. Smaller mech-
anisms may be developed for more limited validity ranges, but this may lead to
faulty predictions at engine-like conditions. In the method the Arrhenius parame-
ters are consistent with the experimental uncertainties reported in literature.
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Appendix A. Reduced and optimized mechanism for ethanol ig-
nition.

No. Reaction A b E

1. H2 +OH <=> H +H2O +2.140e+008 1.52 +3.449e+003

2. O +OH <=> H +O2 +2.020e+014 -0.40 +0.000e+000

3. H2 +O <=> H +OH +5.060e+004 2.67 +6.290e+003

4. H +O2(+M) <=> HO2(+M) +4.520e+013 0.00 +0.000e+000

LOW / +1.05e+019 -1.26 +0.00e+000 /

Enhanced third-body efficiencies:

H2/0.00/ CH4/10.00/ CO2/3.80/ CO/1.90/ H2O/0.00/ N2/0.00/

5. H +O2(+N2) <=> HO2(+N2) +4.520e+013 0.00 +0.000e+000

LOW / +2.03e+020 -1.59 +0.00e+000 /

6. H +O2(+H2) <=> HO2(+H2) +4.520e+013 0.00 +0.000e+000

LOW / +1.52e+019 -1.13 +0.00e+000 /

7. H +O2(+H2O) <=> HO2(+H2O) +4.520e+013 0.00 +0.000e+000

LOW / +2.10e+023 -2.44 +0.00e+000 /

8. OH +HO2 <=> O2 +H2O +2.130e+028 -4.83 +3.500e+003

(Duplicate reaction)

9. OH +HO2 <=> O2 +H2O +9.100e+014 0.00 +1.096e+004

(Duplicate reaction)

10. H +HO2 <=> 2OH +1.500e+014 0.00 +1.000e+003
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11. H +HO2 <=> H2 +O2 +6.630e+013 0.00 +2.126e+003

12. H +HO2 <=> O +H2O +3.010e+013 0.00 +1.721e+003

13. O +HO2 <=> O2 +OH +3.250e+013 0.00 +0.000e+000

14. 2OH <=> O +H2O +3.570e+004 2.40 -2.112e+003

15. 2H <=> H2 +1.000e+018 -1.00 +0.000e+000

16. H2 + 2H <=> 2H2 +9.200e+016 -0.60 +0.000e+000

17. 2H +H2O <=> H2 +H2O +6.000e+019 -1.25 +0.000e+000

18. H +OH <=> H2O +2.210e+022 -2.00 +0.000e+000

19. H +O <=> OH +4.710e+018 -1.00 +0.000e+000

20. 2O <=> O2 +1.890e+013 0.00 -1.788e+003

21. 2HO2 <=> O2 +H2O2 +4.200e+014 0.00 +1.198e+004

(Duplicate reaction)

22. 2HO2 <=> O2 +H2O2 +1.300e+011 0.00 -1.629e+003

(Duplicate reaction)

23. 2OH(+M) <=> H2O2(+M) +1.240e+014 -0.37 +0.000e+000

LOW / +3.04e+030 -4.63 +2.05e+003 /

TROE / +4.70e-001 +1.00e+002 +2.00e+003 +1.00e+015 /

24. H +H2O2 <=> H2 +HO2 +1.980e+006 2.00 +2.435e+003

25. H +H2O2 <=> OH +H2O +3.070e+013 0.00 +4.217e+003

26. O +H2O2 <=> OH +HO2 +9.550e+006 2.00 +3.970e+003

27. OH +H2O2 <=> HO2 +H2O +2.400e+000 4.04 -2.162e+003

28. H + CH3(+M) <=> CH4(+M) +2.140e+015 -0.40 +4.286e+000

LOW / +3.31e+030 -4.00 +2.11e+003 /

TROE / +0.00e+000 +1.00e-015 +1.00e-015 +4.00e+001 /

Enhanced third-body efficiencies:

H2/2.00/ CO2/3.00/ CO/2.00/ H2O/5.00/

29. H + CH4 <=> H2 + CH3 +6.914e+003 3.00 +9.875e+003

30. CH4 +OH <=> CH3 +H2O +5.148e+006 2.00 +2.547e+003

31. CH4 +O <=> CH3 +OH +8.502e+008 1.56 +9.940e+003

32. CH4 +HO2 <=> CH3 +H2O2 +1.120e+013 0.00 +2.886e+004

33. CH3 +HO2 <=> CH4 +O2 +9.429e+011 0.00 +4.286e+000

34. CH3 +O <=> H + CH2O +1.531e+014 0.00 +0.000e+000

35. CH3 +O2 <=> CH2O +OH +4.805e+011 0.00 +1.276e+004

36. H + CH2OH <=> CH3 +OH +1.914e+013 0.00 +1.429e+000

37. CH3 +OH <=> H2O + CH2(S) +2.000e+013 0.00 +5.736e+002

38. CH3 +OH <=> CH2 +H2O +5.057e+006 2.00 +2.500e+003

39. H + CH3 <=> H2 + CH2 +4.886e+013 0.00 +1.575e+004

40. CH3 <=> H + CH2 +2.334e+016 0.00 +9.925e+004

41. H + CH2O(+M) <=> CH2OH(+M) +6.634e+011 0.45 +3.600e+003

LOW / +9.10e+031 -4.82 +6.53e+003 /
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TROE / +7.19e-001 +1.03e+002 +1.29e+003 +4.16e+003 /

Enhanced third-body efficiencies:

H2O/5.00/

42. H + CH2OH <=> H2 + CH2O +3.829e+013 0.00 +1.429e+000

43. OH + CH2OH <=> CH2O +H2O +1.000e+013 0.00 +7.143e+000

44. O + CH2OH <=> CH2O +OH +3.143e+012 0.00 +4.286e+000

45. O2 + CH2OH <=> CH2O +HO2 +4.934e+014 -1.00 +2.857e+000

(Duplicate reaction)

46. O2 + CH2OH <=> CH2O +HO2 +5.577e+013 0.00 +3.117e+003

(Duplicate reaction)

47. CH2 +OH <=> H + CH2O +4.786e+013 0.00 +1.429e+000

48. CH2 + CO2 <=> CH2O + CO +3.457e+010 0.00 +1.000e+003

49. CH2 +O <=> 2H + CO +1.571e+013 0.00 +1.429e+000

50. CH2 +O <=> H2 + CO +3.000e+013 0.00 +7.143e+000

51. CH2 +O2 <=> CH2O +O +6.298e+021 -3.30 +2.745e+003

52. CH2 +O2 <=> 2H + CO2 +2.538e+021 -3.30 +2.745e+003

53. CH2 +O2 <=> H2 + CO2 +5.483e+020 -3.30 +1.637e+003

54. CH2 +O2 <=> CO +H2O +7.280e+019 -2.54 +1.576e+003

55. CH2 +O2 <=> HCO +OH +1.880e+020 -3.30 +3.327e+002

56. CH3 + CH2 <=> H + C2H4 +3.086e+013 0.00 +2.857e+000

57. 2CH2 <=> 2H + C2H2 +1.257e+013 0.00 +0.000e+000

58. CH2(S) <=> CH2 +3.143e+012 0.00 +5.714e+000

59. CH4 + CH2(S) <=> 2CH3 +3.086e+013 0.00 +1.000e+001

60. O2 + CH2(S) <=> H + CO +OH +5.400e+013 0.00 +5.714e+000

61. H2 + CH2(S) <=> H + CH3 +7.000e+013 0.00 +0.000e+000

62. O + CH2(S) <=> 2H + CO +1.629e+013 0.00 +1.000e+001

63. OH + CH2(S) <=> H + CH2O +3.686e+013 0.00 +1.000e+001

64. CO2 + CH2(S) <=> CH2O + CO +5.057e+012 0.00 +4.286e+000

65. CH3 + CH2(S) <=> H + C2H4 +1.086e+013 0.00 +1.000e+001

66. HCOOH <=> CO +H2O +3.045e+014 0.00 +4.733e+004

67. HCOOH <=> H2 + CO2 +1.041e+015 0.00 +6.060e+004

68. OH +HCOOH <=> H + CO2 +H2O +3.818e+006 2.06 +8.375e+002

69. OH +HCOOH <=> CO +OH +H2O +2.273e+007 1.50 -9.620e+002

70. H +HCOOH <=> H2 +H + CO2 +3.271e+006 2.10 +5.703e+003

71. H +HCOOH <=> H2 + CO +OH +6.060e+013 -0.35 +2.860e+003

72. CH3 +HCOOH <=> CH4 + CO +OH +3.900e-007 5.80 +2.577e+003

73. HO2 +HCOOH <=> CO +OH +H2O2 +3.497e+019 -2.20 +1.223e+004

74. O +HCOOH <=> CO + 2OH +5.563e+017 -1.90 +3.357e+003

75. CH2O +OH <=> HCO +H2O +3.430e+009 1.18 -5.236e+002

76. H + CH2O <=> H2 +HCO +6.883e+007 1.77 +3.514e+003
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77. CH2O <=> H +HCO +1.797e+016 0.00 +8.447e+004

78. CH2O +O <=> HCO +OH +5.657e+012 0.00 +3.212e+003

79. HCO +O2 <=> CO +HO2 +1.105e+013 0.00 +4.100e+002

80. HCO <=> H + CO +2.710e+017 -1.00 +1.481e+004

81. HCO +OH <=> CO +H2O +1.000e+014 0.00 +2.857e+000

82. H +HCO <=> H2 + CO +1.462e+013 0.25 +5.714e+000

83. HCO +O <=> CO +OH +3.686e+013 0.00 +1.429e+000

84. HCO +O <=> H + CO2 +3.000e+013 0.00 +2.857e+000

85. CO +OH <=> H + CO2 +9.420e+003 2.25 -2.351e+003

86. CO +O <=> CO2 +6.170e+014 0.00 +3.000e+003

87. CO +O2 <=> CO2 +O +2.530e+012 0.00 +4.769e+004

88. CO +HO2 <=> CO2 +OH +5.800e+013 0.00 +2.293e+004

89. C2H5OH(+M) <=> CH3 + CH2OH(+M) +7.298e+023 -1.68 +8.335e+004

LOW / +2.88e+085 -18.90 +1.10e+005 /

TROE / +5.00e-001 +2.00e+002 +8.90e+002 +4.60e+003 /

Enhanced third-body efficiencies:

H2/2.00/ CO2/3.00/ CO/2.00/ H2O/5.00/

90. C2H5OH(+M) <=> OH + C2H5(+M) +1.536e+023 -1.54 +9.601e+004

LOW / +3.25e+085 -18.81 +1.15e+005 /

TROE / +5.00e-001 +3.00e+002 +9.00e+002 +5.00e+003 /

Enhanced third-body efficiencies:

H2/2.00/ CO2/3.00/ CO/2.00/ H2O/5.00/

91. C2H5OH(+M) <=> H2O + C2H4(+M) +5.341e+013 0.09 +7.747e+004

LOW / +2.57e+083 -18.85 +8.65e+004 /

TROE / +7.00e-001 +3.50e+002 +8.00e+002 +3.80e+003 /

Enhanced third-body efficiencies:

H2O/5.00/

92. C2H5OH(+M) <=> H2 + CH3HCO(+M) +3.930e+011 0.10 +9.881e+004

LOW / +4.46e+087 -19.42 +1.16e+005 /

TROE / +9.00e-001 +9.00e+002 +1.10e+003 +3.50e+003 /

Enhanced third-body efficiencies:

H2O/5.00/

93. OH + C2H5OH <=> H2O + C2H4OH +1.740e+011 0.27 +6.514e+002

94. OH + C2H5OH <=> H2O + CH3CHOH +6.761e+011 0.15 +2.857e+000

95. OH + C2H5OH <=> H2O + CH3CH2O +2.345e+011 0.30 +1.704e+003

96. H + C2H5OH <=> H2 + C2H4OH +2.355e+007 1.80 +4.880e+003

97. H + C2H5OH <=> H2 + CH3CHOH +4.939e+007 1.65 +2.585e+003

98. H + C2H5OH <=> H2 + CH3CH2O +2.186e+007 1.60 +3.298e+003

99. O + C2H5OH <=> OH + C2H4OH +1.801e+008 1.70 +5.225e+003

100. O + C2H5OH <=> OH + CH3CHOH +1.450e+007 1.85 +1.980e+003
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101. O + C2H5OH <=> OH + CH3CH2O +2.302e+007 2.00 +4.448e+003

102. CH3 + C2H5OH <=> CH4 + C2H4OH +6.883e+001 3.18 +9.210e+003

103. CH3 + C2H5OH <=> CH4 + CH3CHOH +3.952e+002 2.99 +6.926e+003

104. CH3 + C2H5OH <=> CH4 + CH3CH2O +1.119e+002 2.99 +8.960e+003

105. HO2 + C2H5OH <=> H2O2 + CH3CHOH +8.200e+003 2.55 +1.075e+004

106. HO2 + C2H5OH <=> H2O2 + C2H4OH +1.230e+004 2.55 +1.373e+004

107. HO2 + C2H5OH <=> H2O2 + CH3CH2O +3.643e+012 0.00 +2.811e+004

108. CH3CH2O <=> H + CH3HCO +8.949e+034 -5.89 +2.419e+004

109. CH3CH2O <=> CH3 + CH2O +2.276e+038 -6.96 +2.686e+004

110. O2 + CH3CH2O <=> HO2 + CH3HCO +2.171e+010 0.00 +1.053e+003

111. CO + CH3CH2O <=> CO2 + C2H5 +8.959e+002 3.16 +6.072e+003

112. H + CH3CH2O <=> CH3 + CH2OH +3.000e+013 0.00 +8.571e+000

113. H + CH3CH2O <=> H2O + C2H4 +9.429e+012 0.00 +8.571e+000

114. OH + CH3CH2O <=> H2O + CH3HCO +1.914e+013 0.00 +2.857e+000

115. O2 + CH3CHOH <=> HO2 + CH3HCO +1.515e+014 0.00 +4.802e+003

(Duplicate reaction)

116. O2 + CH3CHOH <=> HO2 + CH3HCO +2.649e+015 -1.20 +2.857e+000

(Duplicate reaction)

117. O + CH3CHOH <=> OH + CH3HCO +1.686e+014 0.00 +0.000e+000

118. H + CH3CHOH <=> H2O + C2H4 +5.743e+013 0.00 +4.286e+000

119. H + CH3CHOH <=> CH3 + CH2OH +4.371e+013 0.00 +1.429e+000

120. HO2 + CH3CHOH <=> 2OH + CH3HCO +6.743e+013 0.00 +8.571e+000

121. OH + CH3CHOH <=> H2O + CH3HCO +9.571e+012 0.00 +0.000e+000

122. CH3CHOH <=> H + CH3HCO +3.143e+013 0.00 +2.393e+004

123. OH + CH3HCO <=> CH3 +HCOOH +5.743e+015 -1.08 +1.429e+000

124. H + C2H5 <=> H2 + C2H4 +6.786e+013 0.00 +7.657e+003

125. H + C2H5 <=> 2CH3 +3.000e+013 0.00 +8.571e+000

126. OH + C2H5 <=> H2O + C2H4 +7.657e+013 0.00 +5.714e+000

127. O + C2H5 <=> CH3 + CH2O +1.229e+014 0.00 +7.143e+000

128. HO2 + C2H5 <=> OH + CH3CH2O +2.314e+013 0.00 +1.000e+001

129. O2 + C2H5 <=> HO2 + C2H4 +4.211e+028 -5.40 +7.910e+003

130. O2 + C2H5 <=> OH + CH3HCO +7.140e+011 -0.48 +9.073e+003

131. OH + C2H4 <=> C2H4OH +1.290e+012 0.00 -7.820e+002

132. O2 + C2H4OH <=> HOC2H4O2 +1.457e+012 0.00 -1.100e+003

133. HOC2H4O2 <=> 2CH2O +OH +7.371e+010 0.00 +2.765e+004

134. OH + C2H4 <=> H2O + C2H3 +2.020e+013 0.00 +6.699e+003

135. O + C2H4 <=> CH3 +HCO +1.253e+007 1.88 +1.867e+002

136. CH3 + C2H4 <=> CH4 + C2H3 +3.594e+000 3.70 +1.113e+004

137. H + C2H4 <=> H2 + C2H3 +1.056e-007 6.00 +1.982e+003

138. H + C2H4(+M) <=> C2H5(+M) +3.394e+011 0.45 +2.134e+003
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LOW / +1.11e+034 -5.00 +4.45e+003 /

TROE / +1.00e+000 +1.00e-015 +9.50e+001 +2.00e+002 /

Enhanced third-body efficiencies:

H2/2.00/ CO2/3.00/ CO/2.00/ H2O/5.00/

139. C2H4(+M) <=> H2 + C2H2(+M) +3.446e+014 0.00 +7.954e+004

LOW / +1.50e+015 0.00 +5.54e+004 /

140. H + C2H3(+M) <=> C2H4(+M) +1.168e+013 0.27 +2.920e+002

LOW / +9.80e+029 -3.86 +3.32e+003 /

TROE / +7.82e-001 +2.08e+002 +2.66e+003 +6.10e+003 /

Enhanced third-body efficiencies:

H2O/5.00/

141. H + C2H3 <=> H2 + C2H2 +1.723e+014 0.00 +5.714e+000

142. O2 + C2H3 <=> CH2O +HCO +5.343e+028 -5.31 +7.614e+003

143. O2 + C2H3 <=> HO2 + C2H2 +1.151e-006 6.00 +8.265e+003

144. OH + C2H3 <=> H2O + C2H2 +1.086e+013 0.00 +5.714e+000

145. C2H + C2H3 <=> 2C2H2 +5.057e+013 0.00 +1.000e+001

146. CH3 + C2H3 <=> CH4 + C2H2 +3.371e+013 0.00 +1.429e+000

147. OH + C2H2 <=> H2O + C2H +5.681e+007 2.00 +1.340e+004

148. OH + C2H2 <=> CH3 + CO +9.246e-004 4.00 -2.086e+003

149. O + C2H2 <=> CH2 + CO +1.923e+006 2.00 +1.656e+003

150. O + C2H2 <=> OH + C2H +1.715e+015 -0.60 +1.307e+004

151. CH3 + C2H2 <=> CH4 + C2H +5.689e+010 0.00 +1.655e+004

152. C2H2 <=> H + C2H +5.160e+016 0.00 +1.070e+005

153. H + C2H2(+M) <=> C2H3(+M) +5.243e+011 0.58 +2.367e+003

LOW / +2.25e+040 -7.27 +6.58e+003 /

TROE / +1.00e+000 +1.00e-015 +6.75e+002 +1.00e+015 /

Enhanced third-body efficiencies:

H2/2.00/ CO2/3.00/ CO/2.00/ H2O/5.00/

154. H2 + C2H <=> H + C2H2 +6.895e+005 2.39 +1.012e+003

155. O2 + C2H <=> H + 2CO +1.731e+013 0.00 -4.766e+002

Table A.3: 155 reactions and 33 species reduced and opti-
mized reaction mechanism for ethanol ignition. Rate con-
stants k = AT bexp(−E/RuT ); units are cm, mol, s, cal, K.
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