Advanced Numerics for Detailed Chemical Kinetics in Internal Combustion Engine Simulations

Federico Perini, Giuseppe Cantore, Emanuele Galligani, Rolf D. Reitz

Motivation

- After 4000 centuries, combustion still accounts for about **75%** of the total energy supplies \rightarrow huge room for energy efficiency improvements
- Advanced combustion strategies span broad combustion regimes and require detailed fuel chemistry modeling to capture both ignition development and pollutant formation
- Detailed reaction mechanisms for combustion chemistry can involve thousands species and reactions \rightarrow their incorporation into CFD simulations requires extremely efficient and accurate numerics

Chemical Kinetics in Engine CFD simulations

Incorporation of chemical kinetics in internal combustion engine simulations requires an efficient engineering approach to find the best compromise among:

- 1. Reaction mechanism **dimensions**
- 2. Computational complexity of the thermodynamic functions describing gas-phase equilibrium and kinetics
- 3. Computational cost for the integration of the **ODE system** arising from the mass and energy conservation equations

- 4. Number of integrations required by the size of the engine's CFD mesh
- The evolution of species due to chemical reactions in CFD codes such as KIVA is part of an **operator-splitting** procedure, where non fluid-mechanics-related terms such as chemistry and spray/multiphase dynamics are computed separately from the fluid flow solution

Proposed solution:

Development of an open-source computer code with state-of-the-art numerics for integrating chemical kinetics systems, "SpeedCHEM" Perini et al., Energy & Fuels 26 (8), 4804–4822; SAE 2012-01-1974, ASME ICEF2013-19039

An analytical Jacobian formulation for chemical kinetics

Kinetics of gas-phase mixtures are described by a **reaction mechanism**, i.e. a set of n_r arbitrary reactions involving n_s total species:

$$\sum_{i=1}^{n_s} \nu'_{k,i} M'_i \leftrightarrow \sum_{i=1}^{n_s} \nu''_{k,i} M''_i, \ k = 1, \dots, n_r.$$

Evolution of the species due to chemistry in every cell of the CFD mesh is described by mass and energy conservation for a

 \rightarrow constant-volume, adiabatic reactor:

- $\left|\frac{dY_i}{dt} = \frac{W_i}{\rho} \sum_{k=1}^{n_r} \left(\nu_{k,i}'' \nu_{k,i}' \right) \right| k_{f,k} \prod_{i=1}^{n_s} \left(\frac{\rho Y_i}{W_i} \right)^{\nu_{k,i}'} k_{b,k} \prod_{i=1}^{n_s} \left(\frac{\rho Y_i}{W_i} \right)^{\nu_{k,i}''} \right|, \quad i = 1, \dots, n_s,$ $\left| \frac{dT}{dt} = -\frac{1}{\overline{c}} \sum_{i=1}^{n_s} \left(\frac{U_i}{W_i} \frac{dY_i}{dt} \right) \right|$
- Standard ODE solvers evaluate the system's Jacobian matrix derivatives using **finite differences**, to integrate the ODEs using large integration time steps

UNIVERSITY OF WISCONSIN - ENGINE RESEARCH CENTER

Funding Sponsor – **University of Modena (Italy)**

As of June 4, 2013