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In-cylinder flow modeling 
 

• Comparison with PIV in-cylinder  

 experiments [2] 

 

 

 

 

 
                                    High Rs’s have similar structure w/ different bore-scale vortex strength 

 

 

 

 

 
 

 

 

 

 

                                    Momentum from T dominates flow structure 

                                     Recirculating regions at Rs=1.5 due to competition with H 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Full Engine Geometry 
 

• Full 360 degrees 
unstructured engine 
mesh including intake 
and exhaust runners and 
plenums of the Sandia 
1.9L light duty single 
cylinder engine facility 
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Motivation 
• CO and UHC emissions in light-load partially premixed combustion strategies for light 

duty engines mainly arise from overly lean mixture forming at the center of the 
combustion chamber and in the squish region 

 

• Sector mesh simulation can’t capture this phenomenon well, even though ignition 
timing and duration are well captured, thanks to accuate spray modelng at the jet 
centerline  

  The sector geometry intrinsically simplifies the flow structure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Turbulence development is not properly captured 
 

 

 

 

 

 

 

• Detailed compositional and thermophysical initial/time-varying boundary conditions 

 

• Adjustable swirl generation  
plates in the intake runner  
modeled using cell deactivation 

 

 

 

Cylinder
Composition: measured, 

exhaust
p, T: from pressure trace

Intake region
Composition: arbitrary fresh 
air + measured EGR comp

p, T: from intake transducers

Exhaust region
Composition: measured, 
exhaust p, T: measured

Injection
Actual timing, duration, 
injected mass and fuel 

composition. Modeled 
injector body protrusion

H

T

Table 2. Simulation parameters used for the present study. 

 

Grid details 

Mesh type body-fitted hexahedral 

Number of cells 682,091 

Average cell size near TDC [mm] 0.7 

Model details 

Equations Reynolds-Averaged Navier-Stokes 

Solver ALE (KIVA, Torres et al. [35]) 

Grid type Unstructured, staggered 

Turbulence 
2-equation GRNG k-epsilon 

model, Wang et al. [38] 

Chemistry solver SpeedCHEM, Perini et al. [39,40] 

Atomization KH-RT, Beale and Reitz [41] 

SGS near-nozzle flow field Gas-jet, Abani and Reitz [42] 

Law of the wall Launder and Spalding [43] 
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sector simulation

full engine geometry
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sector simulation

full engine geometry
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Helical       Tangential

Principal Component Analysis of swirl vortex 
 

o Dimension reduction of the swirl vortex structure to better  
understand its implications on local mixture preparation 

o 1st principal component = main alignment direction of  
the swirl center envelope 

  The axis the vortex would have if solid-body 

 Described thru: 

 

 

 

 
 

Swirl structure evolution 

 
 

 

 

 

 
- Swirl vortex starts forming > -300 aTDC (squish); >-250 aTDC (bowl) 

- Tilt is negligible near BDC, accumulates close to TDC 

- Fast dissipation of non-symmetric structure after TDC  

 

 

 

 

 
 

Port throttling effects 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Both ports do not change bowl vs. squish discrepancies significantly  role of piston bowl 

geometry and squish flow 
 

 

(seen from below)
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 IVO  IVC EVC

global

squish

bowl

1)Compression accumulates flow energy into 'noble' storage   rotational kinetic energy 

(high Rs) + potential energy (deviation from axial mom. cons. position is a way to store 
energy by applying some force and enabling an action-reaction effect through gradients, 
such as what happens in a capacitor, or in a spring).  

2)This storage is quicky released back into turbulence as the forcing element (compression) 
cannot compete anymore against dissipation.  
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tangential port throttling

helical port throttling
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tangential port throttling

helical port throttling

EXHAUST

INTAKE
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helical port throttling

tangential port throttling

elevation,  eccentricity, e azimuth, 

Affects: 
Principal

Components

Global Rs near-TDC

turbulence

Tangential port   

Helical port   


