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Motivation

Motivation and challenges

After 4 000 centuries, combustion still accounts for more
than 90% worldwide energy conversion
Burgeoning demand for energy supplies is urging research into
more efficient combustion systems and sustainable alternatives
to oil

towards a portfolio of renewable energy sources
biofuels can be candidate for gradually replacing
petroleum-based fuels in transportation
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Motivation

Motivation and challenges

New combustion concepts (such as HCCI/PCCI, RCCI) show
impressive improvements in conversion efficiency.

ICE indicated efficiency >50%
strong dependency on fuel chemistry and local mixture
reactivity

simple/phenomenological combustion models lack of
resolution in modelling:

the whole range of operating conditions of practical systems
presence of exhaust gases in the mixture
simultaneous operation with multiple fuels
multi-component fuels chemistry
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Challenges of simulation

Chemical Kinetics in CFD simulations

Usually part of an operator-splitting scheme
Each cell is treated as an adiabatic well-stirred reactor

embarassingly parallel problem
very stiff IVP
only the overall changes in species mass fractions and cell
internal energy are passed to the flow solver

∂Yi
∂t = −∇ · (Yi v)−∇ ·Yi vd ,i +

1
ρ ω̇i Wi

∂E
∂t = −∇ · (Ev)−∇ · (v ·T )−∇ ·

(
Q̇ + Q̇r

)
+ v ·∑j mj aj + ∑j vd ,i ·mj aj
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Challenges of simulation

Three levels of interaction

Fluid
Flow

solver

∇

Grid

Kinetics

ODE 
solver

Mechanism

Act on three levels
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The reduction-optimization approach

Reaction mechanism sizes for biofuels
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The reduction-optimization approach

What amount of reduction?

Comprehensive mechanisms aren’t viable for practical
computations

1000 to 3000 species, up to 10000 reactions
Jacobian matrix factorization scales with ∼ n3

s , diffusion
iterations with n2

s

Skeletal mechanisms have very limited validity ranges
as few as 4 species, 10 reactions
they well predict only the main ignition event

Idea
Reduced mechanisms that contain the major reaction pathways
Optimized reaction rates to ensure desired validity ranges
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The reduction-optimization approach

Key points for developing the reduced model

1 The reduced mechanism is derived from the detailed one as a
subset of species and reactions

2 Methods for estimating subsets of ’important’ species are
available in the literature (EF, DRG, ...)

3 An error function defines the accuracy of the reduced model
in comparison to the full one

4 Exploiting average uncertainties in reaction rate constants,
their values can be optimized to accomplish for the deleted
reaction pathways
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The reduction-optimization approach

An error function for the reduced mechanism

f = − log

10−8 +
nc

∑
j=1

 ns

∑
k=1

∫ τ=tj

τ=0
Wk

∣∣∣X full
jk (τ)−X red

jk (τ)
∣∣∣

X full
jk (τ)

dτ+

+
∫ τ=tj

τ=0

∣∣∣T full
j (τ)−T red

j (τ)
∣∣∣

T full
j (τ)

dτ


Task: estimate the global error introduced into the mechanism by deletion of
a subset of species and reactions

Choice of nc relevant cases that span the desired validity ranges
Need not to span orders of magnitude for fitness-proportionate selection;
Need to be both valid during the reduction and the optimization phases;
Need to monitor instantaneous time evolution of the system;
Need to evaluate species concentrations further than average thermal
properties.
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The reduction-optimization approach

Setup as an optimization problem

Independent variables: reaction rate coefficients Ai,Ei in
the Arrhenius formulation:

kf ,i = Ai T bi exp
(

Ei
R T

)
, i ∈ {1, ..., nr} .

Temperature exponent not included : most are zero.
Reactions involved in well-established low-order schemes are
not included:

Nbasic = {H,H2,O,O2,OH,H2O,HO2,H2O2,N2,CO,CO2}

Average experimental (NIST) variability ranges for the
reactions of C1-C3 hydrocarbons:

εA = ∆Ai /Ai ≈ 80%,
εE = ∆Ei /Ei ≈ 15%.
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The reduction-optimization approach

Incorporation into an iterative procedure

The reduced
mechanism should
compensate for deleted
reaction pathways
The reaction and
species subset must
include the most active
reactions
A unique, huge
reduction would lead to
an unmanageable
search space

→ a progressive reduction and
optimization algorithm

Detailed mechanism

Element flux analysis
(EF)

Reduced mechanism Delete species
over cut-off

Set error tolerance
Set initial cut-off

Logarithmic
cut-off reduction

Global error
within

tolerance?

Y

Reduced
optimized mechanism

GA-based
optimization

Final mechanism

cut-off reduction
tolerance?

Restore latest valid
mechanism

Global error
within

tolerance?

N

Y

N

GA-based
optimization against
ignition delay data
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Some results

Some results: Ethanol
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Mechanism ns nr details
LLNL 58 383 Marinov, 1999
ROO 33 155 Reduced and optimized against Curran, 1992
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Some results

Some results: Ethanol (2)
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Observations

Observations

Strengths
The performance of the reduced mechanism is similar to that
of the detailed one at a reduced computational cost
No need to dynamically change the mechanism’s dimensions
allows for a tailored approach to the IVP solution

Weaknesses
The initial conditions chosen as suitable validity landscape are
defined by the user → problem-dependent
The possibility of considering transport-driven cases (e.g.,
1-D laminar flames) is limited by their computational demand
(unviable for genetic optimization)
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Motivation

Motivation
Chemical kinetics IVPs in adiabatic environments

For an arbitrary reaction mechanism,
∑ns

i=1 ν′k,iMi 
 ∑ns
i=1 ν′′k,iMi , k = 1, · · · , nr

Mass conservation:
dYi
dt = Wi

ρ ∑nr
k=1

(
ν′′k,i − ν′k,i

)
qk(Y ,T ), i = 1, · · · , ns

Energy conservation:
dT
dt (Y ,T ) = − 1

c̄v (Y ,T ) ∑ns
i=1

(
Ui (T )

Wi
dYi
dt (Y ,T )

)

Integrated with stiff ODE solvers (VODE, LSODE,
RADAU5...)
Only species and internal energy sources are linked to the
CFD solver
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Motivation

Motivation

Why develop an analytical Jacobian formulation?
Reduce scaling of the computational demand for the Jacobian
matrix, that is of the order of n2

s when using finite differences;
Reduce dense matrix storage requirements, also of the order
of n2

s ;
Scaling of the computational costs for matrix factorization, of
the order of about n3

s if dense matrix algebra is employed;
Exploitation of mechanism sparsity, which is significant even
on small (ns < 50) reaction mechanisms;
Quadratic convergence of Newton’s iterative method;
No need to introduce automatic differentiation tools.
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Analytical Jacobian approach

Jacobian matrix structure
Sparsity patterns of three reaction mechanisms for n-heptane
oxidation:

nz = 412

�� �� ��

Mechanism ns nr blacks sparsity 
1. ERC n-heptane 29 52 412 54.2% 
2. LLNL n-heptane 160 1540 3570 86.2% 
3. LLNL PRF 1034 4236 22551 97.9% 
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Analytical Jacobian approach

Jacobian sparsity: pressure-dependent reactions

Species involved in pressure-dependent reactions have dense
lines
Simplifying assumption: ∂C/∂Yj ≈ 0

���������	
��	 ������� ���������	 ����	
��	 �������
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Analytical Jacobian approach

Jacobian sparsity (2)
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Complete formulation
Sparse formulation

The benefits of adopting the approximate, sparser formulation
increase quasi-logarithmically with the number of species
Number of non-zero elements can be halved at average
dimensions (i.e. ns ≈ 100)
Beneficial especially for its factorization
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Analytical Jacobian approach

Interpolation of temperature-dependent quantities

Species thermodynamic potentials are polynomial functions of
temperature

in JANAF format, e.g.
Ui = Rmol

[
(ai − 1)T + bi

2 T 2 + ci
3 T 3 + di

4 T 4 + ei
5 T 5 + fi

]
;

Equilibrium constant is an exponential function of the
reaction’s free energy delta:

Kceq,k (T ) = exp
(
−∆g0

k
) ( patm

R T
)∑ns

i=1 (ν′′k,i−ν′k,i) ;

Reaction rates are exponentials too:

κf ,k (T ) = Ak T bk exp
(
− Ek

R T

)
.
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Analytical Jacobian approach

Interpolation of temperature-dependent quantities

Then, the interpolation errors can be very low e.g. at degree-4
interpolation
Fixed temperature steps make storage simpler and data contiguous
CPU time reduction of more than 1 order of magnitude with -O3
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Results

Some results
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Results

Some results
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Results

CFD results
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Results

Conclusions

The computational efficiency allowed by such approach is
significant

Speedups of about 2x also at almost skeletal mechanisms
About one order of magnitude for average mechanism sizes

The combination of analytical formulation + sparse matrix
algebra is the key point
Degree-4 interpolation helps drop the CPU times and does
not affect the integrator performance
Potential can be improved if the development of a tailored
sparse stiff ODE solver is addressed
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Potential

Potential

When/where does chemistry need to be solved in a
computational domain?
Is it worthwile to solve it in each single cell?
On which basis can reacting cells be regarded as ’similar’ or
’different’?
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High-dimensional clustering

A high-dimensional approach

The idea of clustering cells with similar reactivity is not new
Usually based on φ− T maps for engine calculations
Search for similar cells based on proximity (neighbors, ROI) or
on clustering (k-means)
Chemistry is integrated for each cluster, and then
conservatively redistributed

Why develop a different approach?
The φ− T is problem-specific
Performances can deteriorate when in presence of multiple
fuels or large mechanisms with many intermediate species
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High-dimensional clustering

Setup of the clustering problem

The clustering space is defined as the d-dimensional cell
positions in the state space (temperature, mass fractions):

x1,j = Tj ; x2:d,j = Yk,j , ∀k ∈ S

Normalized to a unity hyperbox

ξ2

1
x2
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M2

ξ10
0

1x1
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   2121 ,, xxf
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High-dimensional clustering

Bounding-box clustering

Cluster initialisation as a
structured grid

unique indexing
Each point is contained in a
bounding box of 2d cluster
centers
Clusters have to stay local
(bounding-box-
constrained k-means
algorithm)
Reduced computational
efforts than k-means:
evaluate 2d distances per
point

ξ2
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ξ10

0
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ε2

ε1
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High-dimensional clustering

Why have the clusters to ’stay local’?

Bounding-box-constrained k-means vs. k-means w/ random
cluster initialisation
n = 20
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High-dimensional clustering

Why have the clusters to ’stay local’?

Bounding-box-constrained k-means vs. k-means w/ random
cluster initialisation
n = 100
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Results

Some results

Fiat 1.3l DI diesel engine, operated with multiple injections
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Results

Some results
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Local species distributions appear to be consistent
Sensitivity analyses have shown no better accuracy at stricter
resolutions
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Results

Conclusions

Unsupervised cell clustering can be much beneficial (3-4x
speedup), independent on the reaction mechanism used
The bounding-box approach allows:

distributed final arrangement of the clusters
reduced scaling with increasing number of clusters
it’s still proportional to the number of points
unsupervised approach to clustering in high-dimensional spaces

To be done
Test the algorithm with huge grids / run it in parallel
Assess its accuracy in presence of multiple or
multi-component fuels
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Concluding remarks

In order to correctly simulate a multidimensional problem that
has reacting behaviour:

Identification of the phenomena that need to be modeled by
the reaction mechanism
A correct choice of the mechanism dimensions to avoid
unnecessary calculations
Tailored approach to the solution is beneficial in case the
mechanism doesn’t undergo on-the-fly reduction

Much can still be achieved
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Concluding remarks

Thank you!
federico.perini@unimore.it, perini@wisc.edu
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