Mechanism reduction

Cell clustering

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Conclusions

Approaches to the incorporation of realistic chemical kinetics in multidimensional engine combustion simulations

## F. Perini<sup>1,2</sup>

<sup>1</sup>Dipartimento di Ingegneria Meccanica e Civile University of Modena

> <sup>2</sup>visiting at Engine Research Center University of Wisconsin-Madison

Michigan State University, May 14th 2012

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

## Introduction

- Motivation
- Challenges of simulation with detailed chemical kinetics
- 2 Reduction of detailed combustion mechanisms
  - The reduction-optimization approach
  - Some results
  - Observations
- Sparse Analytical Jacobians for combustion kinetics
  - Motivation
  - Analytical Jacobian approach
  - Results
- 4 High-dimensional cell clustering
  - Potential
  - High-dimensional clustering
  - Results
- 5 Concluding remarks

| Introduction<br>●00000 | Mechanism reduction                                                                                        | Analytical Jacobian app.                 | Cell clustering  | Conclusions |
|------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------|-------------|
| Motivation             |                                                                                                            |                                          |                  |             |
|                        | ntroduction<br>Motivation<br>Challenges of simul                                                           | ation with detailed ch                   | nemical kinetics |             |
|                        | Reduction of detailed<br>The reduction-optin<br>Some results<br>Observations                               | combustion mechanis<br>mization approach | ims              |             |
|                        | <ul> <li>parse Analytical Jac</li> <li>Motivation</li> <li>Analytical Jacobiar</li> <li>Results</li> </ul> | obians for combustion<br>approach        | kinetics         |             |
| (4) H                  | ligh-dimensional cell                                                                                      | clustering                               |                  |             |

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Potential
- High-dimensional clustering
- Results
- 5 Concluding remarks

Mechanism reduction

Cell clustering

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Conclusions

Motivation

# Motivation and challenges

- After 4 000 centuries, **combustion** still accounts for more than 90% worldwide energy conversion
- Burgeoning demand for energy supplies is urging research into more efficient combustion systems and sustainable alternatives to oil
  - towards a portfolio of renewable energy sources
  - **biofuels** can be candidate for gradually replacing petroleum-based fuels in transportation

| Introduction | Mechanism reduction | Analytical Jacobi |
|--------------|---------------------|-------------------|
| 00000        |                     |                   |

#### Motivation

# Motivation and challenges

- New combustion concepts (such as HCCI/PCCI, RCCI) show impressive improvements in conversion efficiency.
  - ICE indicated efficiency >50%
  - strong dependency on fuel chemistry and local mixture reactivity
- simple/phenomenological combustion models lack of resolution in modelling:
  - the whole range of operating conditions of practical systems
  - presence of exhaust gases in the mixture
  - simultaneous operation with multiple fuels
  - multi-component fuels chemistry

| Introduction | Mechanism reduction | Analytical Jacobi |
|--------------|---------------------|-------------------|
| 00000        |                     |                   |

#### Motivation

# Motivation and challenges

- New combustion concepts (such as HCCI/PCCI, RCCI) show impressive improvements in conversion efficiency.
  - ICE indicated efficiency >50%
  - strong dependency on fuel chemistry and local mixture reactivity
- simple/phenomenological combustion models lack of resolution in modelling:
  - the whole range of operating conditions of practical systems
  - presence of exhaust gases in the mixture
  - simultaneous operation with multiple fuels
  - multi-component fuels chemistry

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

#### Challenges of simulation

## Introduction

Motivation

## • Challenges of simulation with detailed chemical kinetics

- 2 Reduction of detailed combustion mechanisms
  - The reduction-optimization approach
  - Some results
  - Observations
- Sparse Analytical Jacobians for combustion kinetics
  - Motivation
  - Analytical Jacobian approach
  - Results
- 4 High-dimensional cell clustering
  - Potential
  - High-dimensional clustering
  - Results
- 5 Concluding remarks

Mechanism reduction

Analytical Jacobian app.

Cell clustering

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conclusions

Challenges of simulation

# Chemical Kinetics in CFD simulations

- Usually part of an operator-splitting scheme
- Each cell is treated as an adiabatic well-stirred reactor
  - embarassingly parallel problem
  - very stiff IVP
  - only the overall changes in species mass fractions and cell internal energy are passed to the flow solver

• 
$$\frac{\partial Y_i}{\partial t} = -\nabla \cdot (Y_i \mathbf{v}) - \nabla \cdot Y_i \mathbf{v}_{d,i} + \frac{1}{\rho} \dot{\omega}_i W_i$$
  
•  $\frac{\partial E}{\partial t} = -\nabla \cdot (E\mathbf{v}) - \nabla \cdot (\mathbf{v} \cdot \mathbf{T}) - \nabla \cdot (\dot{\mathbf{Q}} + \dot{\mathbf{Q}}_r) + \mathbf{v} \cdot \sum_j m_j \mathbf{a}_j + \sum_j \mathbf{v}_{d,i} \cdot m_j \mathbf{a}_j$ 

Introduction ○○○○○● Mechanism reduction

Analytical Jacobian app.

Cell clustering

Conclusions

Challenges of simulation

# Three levels of interaction



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

#### The reduction-optimization approach

#### Introduction

- Motivation
- Challenges of simulation with detailed chemical kinetics
- 2 Reduction of detailed combustion mechanisms
  - The reduction-optimization approach
  - Some results
  - Observations
- 3 Sparse Analytical Jacobians for combustion kinetics
  - Motivation
  - Analytical Jacobian approach
  - Results
- 4 High-dimensional cell clustering
  - Potential
  - High-dimensional clustering
  - Results
- 5 Concluding remarks

Mechanism reduction

Analytical Jacobian app.

Cell clustering

Conclusions

The reduction-optimization approach

# Reaction mechanism sizes for biofuels



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Mechanism reduction

Cell clustering

Conclusions

The reduction-optimization approach

# What amount of reduction?

- **Comprehensive mechanisms** aren't viable for practical computations
  - 1000 to 3000 species, up to 10000 reactions
  - Jacobian matrix factorization scales with  $\sim n_s^3,$  diffusion iterations with  $n_s^2$
- Skeletal mechanisms have very limited validity ranges
  - as few as 4 species, 10 reactions
  - they well predict only the main ignition event

#### Idea

**Reduced mechanisms** that contain the major reaction pathways Optimized reaction rates to ensure desired validity ranges

Mechanism reduction

Analytical Jacobian app.

Cell clustering

Conclusions

The reduction-optimization approach

# Key points for developing the reduced model

- The reduced mechanism is derived from the detailed one as a subset of species and reactions
- Methods for estimating subsets of 'important' species are available in the literature (EF, DRG, ...)
- An error function defines the accuracy of the reduced model in comparison to the full one
- Exploiting average uncertainties in reaction rate constants, their values can be **optimized** to accomplish for the deleted reaction pathways

Mechanism reduction

Analytical Jacobian app.

Cell clustering

Conclusions

The reduction-optimization approach

## An error function for the reduced mechanism

$$\begin{split} f &= -\log\left\{10^{-8} + \sum_{j=1}^{n_c}\left[\sum_{k=1}^{n_s}\int_{\tau=0}^{\tau=t_j}W_k\frac{\left|X_{jk}^{full}(\tau) - X_{jk}^{red}(\tau)\right|}{X_{jk}^{full}(\tau)}d\tau + \right. \\ &\left. + \int_{\tau=0}^{\tau=t_j}\frac{\left|T_j^{full}(\tau) - T_j^{red}(\tau)\right|}{T_j^{full}(\tau)}d\tau\right]\right\}\end{split}$$

**Task**: estimate the global error introduced into the mechanism by deletion of a subset of species and reactions

- Choice of *n<sub>c</sub>* relevant cases that span the desired validity ranges
- Need not to span orders of magnitude for fitness-proportionate selection;
- Need to be both valid during the reduction and the optimization phases;
- Need to monitor instantaneous time evolution of the system;
- Need to evaluate species concentrations further than average thermal properties.

Mechanism reduction

Analytical Jacobian app. 0000000000000 Cell clustering

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conclusions

The reduction-optimization approach

# Setup as an optimization problem

 Independent variables: reaction rate coefficients A<sub>i</sub>, E<sub>i</sub> in the Arrhenius formulation:

$$k_{f,i} = A_i T^{b_i} \exp\left(\frac{E_i}{R T}\right), \qquad i \in \{1, ..., n_r\}.$$

- Temperature exponent not included : most are zero.
- Reactions involved in well-established low-order schemes are not included:

 $\textit{N}_{\textit{basic}} = \{\textit{H},\textit{H}_{2},\textit{O},\textit{O}_{2},\textit{OH},\textit{H}_{2}\textit{O},\textit{HO}_{2},\textit{H}_{2}\textit{O}_{2},\textit{N}_{2},\textit{CO},\textit{CO}_{2}\}$ 

• Average experimental (NIST) variability ranges for the reactions of C1-C3 hydrocarbons:

• 
$$\epsilon_A = \Delta A_i / A_i \approx 80\%$$
,

•  $\epsilon_E = \Delta E_i / E_i \approx 15\%$ .

Mechanism reduction

Analytical Jacobian app.

Cell clustering

Conclusions

The reduction-optimization approach

## Incorporation into an iterative procedure

- The reduced mechanism should compensate for deleted reaction pathways
- The reaction and species subset must include the most active reactions
- A unique, huge reduction would lead to an unmanageable search space



 $\rightarrow$  a progressive reduction and optimization algorithm

| Introduction<br>000000 | Mechanism reduction | Analytical Jacobian app.<br>0000000000000 | Cell clustering | Conclusions |
|------------------------|---------------------|-------------------------------------------|-----------------|-------------|
| Some results           |                     |                                           |                 |             |
|                        |                     |                                           |                 |             |

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

### Introduction

- Motivation
- Challenges of simulation with detailed chemical kinetics

## 2 Reduction of detailed combustion mechanisms

- The reduction-optimization approach
- Some results
- Observations
- 3 Sparse Analytical Jacobians for combustion kinetics
  - Motivation
  - Analytical Jacobian approach
  - Results
- 4 High-dimensional cell clustering
  - Potential
  - High-dimensional clustering
  - Results
- 5 Concluding remarks

Mechanism reduction

Analytical Jacobian app.

Cell clustering

Conclusions

Some results

# Some results: Ethanol



| Mechanism | ns | n <sub>r</sub> | details                                    |
|-----------|----|----------------|--------------------------------------------|
| LLNL      | 58 | 383            | Marinov, 1999                              |
| ROO       | 33 | 155            | Reduced and optimized against Curran, 1992 |

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへ⊙

Mechanism reduction

Analytical Jacobian app.

Cell clustering

Conclusions

Some results

# Some results: Ethanol (2)



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

| Introduction<br>000000 | Mechanism reduction<br>○○○○○○○○●○ | Analytical Jacobian app.<br>0000000000000 | Cell clustering | Conclusions |
|------------------------|-----------------------------------|-------------------------------------------|-----------------|-------------|
| Observations           |                                   |                                           |                 |             |

- Motivation
- Challenges of simulation with detailed chemical kinetics

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

## 2 Reduction of detailed combustion mechanisms

- The reduction-optimization approach
- Some results

#### Observations

- Sparse Analytical Jacobians for combustion kinetics
  - Motivation
  - Analytical Jacobian approach
  - Results
- 4 High-dimensional cell clustering
  - Potential
  - High-dimensional clustering
  - Results
- 5 Concluding remarks

| Introduction<br>000000 | Mechanism reduction<br>○○○○○○○○○● | Analytical Jacobian app.<br>0000000000000 | Cell clustering<br>000000000000 | Conclusions |
|------------------------|-----------------------------------|-------------------------------------------|---------------------------------|-------------|
| Observations           |                                   |                                           |                                 |             |
| Observati              | ons                               |                                           |                                 |             |

### • Strengths

- The performance of the reduced mechanism is similar to that of the detailed one at a reduced computational cost
- No need to dynamically change the mechanism's dimensions allows for a tailored approach to the IVP solution
- Weaknesses
  - The initial conditions chosen as suitable validity landscape are defined by the user  $\rightarrow$  problem-dependent
  - The possibility of considering transport-driven cases (e.g., 1-D laminar flames) is limited by their computational demand (unviable for genetic optimization)

- Motivation
- Challenges of simulation with detailed chemical kinetics

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 2 Reduction of detailed combustion mechanisms
  - The reduction-optimization approach
  - Some results
  - Observations
- Sparse Analytical Jacobians for combustion kinetics
  - Motivation
  - Analytical Jacobian approach
  - Results
- 4 High-dimensional cell clustering
  - Potential
  - High-dimensional clustering
  - Results
- 5 Concluding remarks

| Introduction<br>000000 | Mechanism reduction | Analytical Jacobian app.<br>○●○○○○○○○○○○○ | Cell clustering | Conclusions |
|------------------------|---------------------|-------------------------------------------|-----------------|-------------|
| Motivation             |                     |                                           |                 |             |
| Motivati               | ion                 |                                           |                 |             |

Chemical kinetics IVPs in adiabatic environments

- For an arbitrary reaction mechanism,  $\sum_{i=1}^{n_s} \nu'_{k,i} M_i \rightleftharpoons \sum_{i=1}^{n_s} \nu''_{k,i} M_i, \qquad k = 1, \cdots, n_r$
- Mass conservation:  $\frac{dY_i}{dt} = \frac{W_i}{\rho} \sum_{k=1}^{n_r} \left( \nu_{k,i}'' - \nu_{k,i}' \right) q_k(\mathbf{Y}, T), \qquad i = 1, \cdots, n_s$

# • Energy conservation: $\frac{dT}{dt} (\mathbf{Y}, T) = -\frac{1}{\bar{c}_v(\mathbf{Y}, T)} \sum_{i=1}^{n_s} \left( \frac{U_i(T)}{W_i} \frac{dY_i}{dt} (\mathbf{Y}, T) \right)$

- Integrated with stiff ODE solvers (VODE, LSODE, RADAU5...)
- Only species and internal energy sources are linked to the CFD solver

| Introduction<br>000000 | Mechanism reduction | Analytical Jacobian app. | Cell clustering | Conclusions |
|------------------------|---------------------|--------------------------|-----------------|-------------|
| Motivation             |                     |                          |                 |             |
| Motivati               | on                  |                          |                 |             |

Why develop an analytical Jacobian formulation?

- Reduce scaling of the computational demand for the Jacobian matrix, that is of the order of  $n_s^2$  when using finite differences;
- Reduce dense matrix storage requirements, also of the order of n<sub>s</sub><sup>2</sup>;
- Scaling of the computational costs for matrix factorization, of the order of about  $n_s^3$  if dense matrix algebra is employed;
- Exploitation of mechanism sparsity, which is significant even on small  $(n_s < 50)$  reaction mechanisms;
- Quadratic convergence of Newton's iterative method;
- No need to introduce automatic differentiation tools.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

#### Analytical Jacobian approach

#### Introduction

- Motivation
- Challenges of simulation with detailed chemical kinetics
- 2 Reduction of detailed combustion mechanisms
  - The reduction-optimization approach
  - Some results
  - Observations
- Sparse Analytical Jacobians for combustion kinetics
  - Motivation
  - Analytical Jacobian approach
  - Results
- 4 High-dimensional cell clustering
  - Potential
  - High-dimensional clustering
  - Results
- 5 Concluding remarks

Mechanism reduction

Analytical Jacobian app.

Cell clustering

Conclusions

Analytical Jacobian approach

# Jacobian matrix structure

Sparsity patterns of three reaction mechanisms for n-heptane oxidation:



| Mechanism         | n <sub>s</sub> | n <sub>r</sub> | blacks | sparsity |
|-------------------|----------------|----------------|--------|----------|
| 1. ERC n-heptane  | 29             | 52             | 412    | 54.2%    |
| 2. LLNL n-heptane | 160            | 1540           | 3570   | 86.2%    |
| 3. LLNL PRF       | 1034           | 4236           | 22551  | 97.9%    |

Mechanism reduction

Analytical Jacobian app.

Cell clustering

Conclusions

Analytical Jacobian approach

# Jacobian sparsity: pressure-dependent reactions

- Species involved in pressure-dependent reactions have **dense** lines
- Simplifying assumption:  $\partial C / \partial Y_j \approx 0$



full third-body effects

simplified third-body effects



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Mechanism reduction

Analytical Jacobian app.

Cell clustering

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conclusions

Analytical Jacobian approach

# Jacobian sparsity (2)



- The benefits of adopting the approximate, sparser formulation increase quasi-logarithmically with the number of species
- Number of non-zero elements can be halved at average dimensions (i.e.  $n_s \approx 100$ )
- Beneficial especially for its factorization

Mechanism reduction

Analytical Jacobian app.

Cell clustering

Conclusions

Analytical Jacobian approach

## Interpolation of temperature-dependent quantities

- Species thermodynamic potentials are polynomial functions of temperature
  - in JANAF format, e.g.  $U_i = R_{mol} \left[ (a_i - 1) T + \frac{b_i}{2} T^2 + \frac{c_i}{3} T^3 + \frac{d_i}{4} T^4 + \frac{e_i}{5} T^5 + f_i \right];$
- Equilibrium constant is an exponential function of the reaction's free energy delta:

• 
$$\mathcal{K}c_{eq,k}\left(T\right) = \exp\left(-\Delta g_{k}^{0}\right) \left(\frac{p_{atm}}{RT}\right)^{\sum_{i=1}^{ns}\left(\nu_{k,i}^{\prime\prime}-\nu_{k,i}^{\prime}\right)};$$

• Reaction rates are exponentials too:

• 
$$\kappa_{f,k}(T) = A_k T^{b_k} \exp\left(-\frac{E_k}{RT}\right).$$

Mechanism reduction

Analytical Jacobian app.

Cell clustering

Conclusions

Analytical Jacobian approach

## Interpolation of temperature-dependent quantities

- Then, the interpolation errors can be very low e.g. at degree-4 interpolation
- Fixed temperature steps make storage simpler and data contiguous
- CPU time reduction of more than 1 order of magnitude with -03



▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

| Introduction<br>000000 | Mechanism reduction | Analytical Jacobian app. | Cell clustering<br>00000000000 | Conclusions |
|------------------------|---------------------|--------------------------|--------------------------------|-------------|
| Results                |                     |                          |                                |             |

- Motivation
- Challenges of simulation with detailed chemical kinetics

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 2 Reduction of detailed combustion mechanisms
  - The reduction-optimization approach
  - Some results
  - Observations

## Sparse Analytical Jacobians for combustion kinetics

- Motivation
- Analytical Jacobian approach
- Results
- 4 High-dimensional cell clustering
  - Potential
  - High-dimensional clustering
  - Results
- 5 Concluding remarks

| Introduction<br>000000 | Mechanism reduction | Analytical Jacobian app.<br>○○○○○○○○○○○○○○ | Cell clustering | C |
|------------------------|---------------------|--------------------------------------------|-----------------|---|
| Desults                |                     |                                            |                 |   |

## Some results



#### Reference conditions

- 18 IVP cases, at  $p_0 \in \{2.0; 20.0\}$  bar,  $T_0 \in \{750; 1000; 1500\}$  K,  $\lambda \in \{0.5; 1.0; 2.0\}$
- Integration intervals subdivided into 100 subcycles

Conclusions

| Introduction<br>000000 | Mechanism reduction | Analytical Jacobian app. | Cell clustering | Conclusions |
|------------------------|---------------------|--------------------------|-----------------|-------------|
| Results                |                     |                          |                 |             |

## Some results



- Almost linear speedup in comparison with a reference code that uses FD
- About one order of magnitude at typical CFD-tailored mechanism dimensions

| Introduction | Mechanism reduction | Analytical Jacobian app. | Cell clustering |
|--------------|---------------------|--------------------------|-----------------|
| Results      |                     |                          |                 |

# CFD results



- 60-degree engine sector grids with 16950, 42480 cells
- Time spent for the fluid flow solution becomes almost negligible

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQで

| Introduction<br>000000 | Mechanism reduction | Analytical Jacobian app.<br>○○○○○○○○○○○○○ | Cell clustering | Conclusions |  |  |
|------------------------|---------------------|-------------------------------------------|-----------------|-------------|--|--|
| Results                |                     |                                           |                 |             |  |  |
| Conclusions            |                     |                                           |                 |             |  |  |

- The computational efficiency allowed by such approach is significant
  - Speedups of about 2x also at almost skeletal mechanisms
  - About one order of magnitude for average mechanism sizes
- The combination of analytical formulation + **sparse** matrix algebra is the key point
- Degree-4 interpolation helps drop the CPU times and does not affect the integrator performance
- Potential can be improved if the development of a tailored **sparse stiff ODE solver** is addressed

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

| Introduction<br>000000 | Mechanism reduction                                                            | Analytical Jacobian app.<br>00000000000000 | Cell clustering<br>●00000000000 | Conclusions |
|------------------------|--------------------------------------------------------------------------------|--------------------------------------------|---------------------------------|-------------|
| Potential              |                                                                                |                                            |                                 |             |
| •                      | n <mark>troduction</mark><br>Motivation<br>Challenges of simulat               | tion with detailed ch                      | nemical kinetics                |             |
| •                      | eduction of detailed c<br>The reduction-optimi<br>Some results<br>Observations |                                            | ims                             |             |
| •                      | parse Analytical Jacob<br>Motivation<br>Analytical Jacobian a<br>Results       |                                            | kinetics                        |             |
| 4 H                    | ligh-dimensional cell c                                                        | lustering                                  |                                 |             |

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Potential
- High-dimensional clustering
- Results
- 5 Concluding remarks

| Introduction<br>000000 | Mechanism reduction | Analytical Jacobian app.<br>0000000000000 | Cell clustering | Conclusions |
|------------------------|---------------------|-------------------------------------------|-----------------|-------------|
| Potential              |                     |                                           |                 |             |
| Potential              |                     |                                           |                 |             |
|                        |                     |                                           |                 |             |



- When/where does chemistry need to be solved in a computational domain?
- Is it worthwile to solve it in each single cell?
- On which basis can reacting cells be regarded as 'similar' or 'different'?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

#### High-dimensional clustering

#### Introduction

- Motivation
- Challenges of simulation with detailed chemical kinetics
- 2 Reduction of detailed combustion mechanisms
  - The reduction-optimization approach
  - Some results
  - Observations
- 3 Sparse Analytical Jacobians for combustion kinetics
  - Motivation
  - Analytical Jacobian approach
  - Results
- 4 High-dimensional cell clustering
  - Potential
  - High-dimensional clustering
  - Results
- 5 Concluding remarks

High-dimensional clustering

## A high-dimensional approach

The idea of clustering cells with similar reactivity is not new

- Usually based on  $\phi T$  maps for engine calculations
- Search for similar cells based on proximity (neighbors, ROI) or on clustering (k-means)
- Chemistry is integrated for each cluster, and then conservatively redistributed

#### Why develop a different approach?

- The  $\phi T$  is problem-specific
- Performances can deteriorate when in presence of multiple fuels or large mechanisms with many intermediate species

Mechanism reduction

Analytical Jacobian app.

Cell clustering

(日)

Conclusions

High-dimensional clustering

## Setup of the clustering problem

• The clustering space is defined as the *d*-dimensional cell positions in the state space (temperature, mass fractions):

• 
$$x_{1,j} = T_j;$$
  $x_{2:d,j} = Y_{k,j}, \forall k \in \mathbb{S}$ 

• Normalized to a unity hyperbox



Mechanism reduction

Cell clustering

Conclusions

High-dimensional clustering

## Bounding-box clustering

- Cluster initialisation as a structured grid
  - unique indexing
- Each point is contained in a bounding box of 2<sup>d</sup> cluster centers
- Clusters have to stay local (bounding-boxconstrained k-means algorithm)
- Reduced computational efforts than k-means: evaluate 2<sup>d</sup> distances per point



(日) (四) (日) (日) (日)

Mechanism reduction

Analytical Jacobian app.

Cell clustering

Conclusions

High-dimensional clustering

#### Why have the clusters to 'stay local'?

- Bounding-box-constrained k-means vs. k-means w/ random cluster initialisation
- *n* = 20



k-means, k = 20

BBC k-means, k = 20

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Mechanism reduction

Analytical Jacobian app.

Cell clustering

Conclusions

High-dimensional clustering

#### Why have the clusters to 'stay local'?

- Bounding-box-constrained k-means vs. k-means w/ random cluster initialisation
- *n* = 100



k-means, k = 100

BBC k-means, k = 100

| Introduction<br>000000 | Mechanism reduction                                                                                                                                        | Analytical Jacobian app.<br>00000000000000 | Cell clustering | Conclusions |  |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------|-------------|--|
| Results                |                                                                                                                                                            |                                            |                 |             |  |
| •                      | roduction<br>Motivation<br>Challenges of simula                                                                                                            | tion with detailed ch                      | emical kinetics |             |  |
| •                      | <ul> <li>2 Reduction of detailed combustion mechanisms</li> <li>The reduction-optimization approach</li> <li>Some results</li> <li>Observations</li> </ul> |                                            |                 |             |  |
| •                      | arse Analytical Jaco<br>Motivation<br>Analytical Jacobian<br>Results                                                                                       | bians for combustion<br>approach           | kinetics        |             |  |
|                        | <mark>gh-dimensional cell c</mark><br>Potential                                                                                                            | clustering                                 |                 |             |  |

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

- High-dimensional clustering
- Results

Concluding remarks

| Introduction<br>000000 | Mechanism reduction | Analytical Jacobian app.<br>0000000000000 | Cell clustering | Conclusions |  |
|------------------------|---------------------|-------------------------------------------|-----------------|-------------|--|
| Results                |                     |                                           |                 |             |  |
| Some results           |                     |                                           |                 |             |  |

• Fiat 1.3I DI diesel engine, operated with multiple injections



Grid size: 24780 cells at BDC Dimensionality: d = 5 (T,  $C_7H_{16}$ ,  $O_2$ ,  $CO_2$ ,  $HO_2$ ,  $H_2O$ ) Cluster initialisation resolution:  $\varepsilon_T = 20K$ ,  $\varepsilon_Y = 0.005$ 

| Results Some results | Introduction<br>000000 | Mechanism reduction | Analytical Jacobian app.<br>00000000000000 | Cell clustering<br>○○○○○○○○○●○ | Conclusions |  |
|----------------------|------------------------|---------------------|--------------------------------------------|--------------------------------|-------------|--|
| Some results         | Results                |                     |                                            |                                |             |  |
|                      | Some results           |                     |                                            |                                |             |  |



- Local species distributions appear to be consistent
- Sensitivity analyses have shown no better accuracy at stricter resolutions

| Introduction<br>000000 | Mechanism reduction | Analytical Jacobian app.<br>0000000000000 | Cell clustering | Conclusions |  |
|------------------------|---------------------|-------------------------------------------|-----------------|-------------|--|
| Results                |                     |                                           |                 |             |  |
| Conclusions            |                     |                                           |                 |             |  |

- Unsupervised cell clustering can be much beneficial (3-4x speedup), independent on the reaction mechanism used
- The bounding-box approach allows:
  - distributed final arrangement of the clusters
  - reduced scaling with increasing number of clusters
  - it's still proportional to the number of points
  - unsupervised approach to clustering in high-dimensional spaces

#### To be done

- $\bullet\,$  Test the algorithm with huge grids / run it in parallel
- Assess its accuracy in presence of multiple or multi-component fuels

| Introduction | Mechanism reduction | Analytical Jacobian app. | Cell clustering |
|--------------|---------------------|--------------------------|-----------------|
|              |                     |                          |                 |

## Concluding remarks

- In order to correctly simulate a multidimensional problem that has reacting behaviour:
  - Identification of the phenomena that need to be modeled by the reaction mechanism

Conclusions

- A correct choice of the mechanism dimensions to avoid unnecessary calculations
- Tailored approach to the solution is beneficial in case the mechanism doesn't undergo on-the-fly reduction
- Much can still be achieved

Mechanism reduction

Cell clustering

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusions

## Concluding remarks

# Thank you!

federico.perini@unimore.it, perini@wisc.edu

#### Acknowledgements

Giuseppe Cantore and the 'Gruppo Motori' staff Rolf Reitz and ERC staff

| Introduction<br>000000 | Mechanism reduction | Analytical Jacobian app.<br>0000000000000 | Cell clustering | Conclusions |
|------------------------|---------------------|-------------------------------------------|-----------------|-------------|
|                        |                     |                                           |                 |             |

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶