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Summary. The work addresses to a better comprehension of the error assessment
in LES due to the coupling between the model and the numerical discretisation.
The possibility to reduce the interactions between the error sources is investigated
on different test cases through the use of an algebraic function correlating the subfil-
ter and subgrid wavelengths, respectively ∆̄ and ∆, incrementing the ratio between
the two where the scales are poorly resolved.
The analysis, considering a range of grid resolutions as well as subfilter models, has
been performed starting from database sets which have been reconstructed with
ordinary kriging to estimate the sensitiveness of the strategy with respect to the
simulation parameters. The results indicate that a reduction in the error cost func-
tion can be achieved for most subfilter models and that the approach looks quite
stable for a moderate range of the grid resolution.
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1 Introduction

The main concern regarding LES in industrial applications is the definition
of criteria for the error assessment, as the increasing computational resources
make LES an operable tool to the simulation of High-Reynolds complex flows.
In traditional LES the filtering operator is performed by the grid discretisa-
tion: the scales smaller than the geometric wavelength ∆ are not captured by
the simulation and are defined as subgrid scales.
While ∆ is actually straightforward defined on structured isotropic grids, its
definition may be arguable when dealing with anisotropic or unstructured
grids, as in most industrial applications.
The problem has been approached by many authors in different ways ([1], [2])
but all the proposals till now presented about this topic focus on the geometry
and do not take into account the flow behaviour.
The model used to close the set of equations acts as a filter too, introducing a
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second wavelength ∆̄ : the scales filtered by the model will be hereafter indi-
cated as subfilter scales [3]. The way these two filters interact is of difficult
comprehension as the shape of the resulting filter kernels is extremely case
sensitive: this may lead to unpredictable behaviour due to strongly non-linear
error dynamics. Furthermore Ghosal [4] showed that the numerical error is
of the same order of the modelling error for most of the wave numbers and
proposed as a possible solution the combination of prefiltering and high order
schemes. Since this approach increases noticeably the computational cost and
the complexity of the problem, a more common solution is to increase the
ratio ∆̄/∆ to force the error dynamics to be governed by the model error.
A high ratio can be achieved either by improving the grid resolution or by
extending the filter width, but the application of these guidelines on the whole
domain may anyway produce inadequate results, in terms of significantly in-
creased computational costs or lack of resolution. As the interactions between
numerical and model errors are particularly strong in the smallest resolved
scales, the main idea of our work is a local increase of ∆̄ extending it only
where needed. This kind of approach should modify the model filter kernel as
to reduce the interaction between the 2 main sources of error and produce a
lower discretisation dependence of the error itself.
This approach has been intensively tested to check its robustness when cou-
pled with different subgrid-scales models, numerical discretisations or grids.
The paper is structured as follows: in section 2 LES and filtering approaches
are presented as well as an exhaustive explanation of the universal anisotropic

∆̄ (UAD) approach is furnished. The main results by the application of the
anisotropic ∆̄ to two different test cases are summed up in section 3, while in
the last section 4 conclusions are drawn.

2 Theoretical LES

2.1 The filtering operation

We consider here Newtonian, incompressible, three-dimensional and time-
dependent flows.The scales separation in LES is achieved by the application of
a scale high-pass filter, which is mathematically formulated as a convolution
product in the physical space. The Fourier transform of the filter kernel G is
associated to a bandwidth length ∆̄ that separates the resolved scales from
the filtered ones, which are not directly solved but modelled adding the τ LES

closure term to the momentum equation.

2.2 LES Models

In the following analysis four different models have been tested to check their
sensitiveness to the application of the UAD filtering approach. The model
chosen are the One-equation Turbulent Energy Model [5], the Smagorinsky
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Model [6], the Variational multi-scale approach [7] applied to the Smagorinsky
one and the WALE model [8].
It is actually useful to remark that, as each model relate in a different way
the νLES with ∆̄, we can expect that the overall results will be sensitive of
the different coupling between model and UAD. In the following sections, the
models will be respectively refereed ans ONE, SM , V MS and WALE.

2.3 UAD Approach

This paper focuses on the possibility to mask the numerical error by means of
the model one, as it generally looks like that ∆̄/∆ > 1 is beneficial for pursuing
a global error reduction and the application of a ∆̄ significantly higher than
the ∆ produces grid-independent numerical solutions [9].
A high ratio value is not anyway necessary on the whole physical domain, but
just locally where the numerical error becomes large if compared to the model
error, a situation most common when estimating the resolution of the smallest
resolved scales. The strategy we are proposing relies indeed on the possibility
to extend the subfilter wavelength ∆̄ only where the scales are poorly resolved
through the definition of an algebraic function relating ∆̄ and ∆:

fUAD =
∆̄UAD

∆
= 1 + CUAD Θ tanh(Ψ)

1

Θ (1)

Θ and Ψ are respectively a parameter estimating the global and local resolu-
tion, while CUAD is a constant. The shape of the function fUAD for a value
of CUAD = 5 is presented in figure 1(a).
The parameter Ψ is an indicator of the wavelength of the resolved scales: as
the parameter increases, smaller scales are locally present. Since vorticity is
a quantity which clearly indicates the presence of small scales, we decided to
define the parameter Ψ as the normalised magnitude of the vorticity vector

Ψ = 4

√

ω

max(ω)
(2)

the fourth root of Ψ being chosen as in that condition UAD results less case
sensitive and a greater part of the volume is affected by the anisotropic filter-
ing, fig. 1(b).
While the parameter Ψ is a field parameter, i.e. every computational cell has
its own Ψ value, the parameter Θ is a scalar indicating the global resolution
of the system, and his value determines the shape and the intensity of the
function fUAD . The form factor Θ, defined by the eq. 3, shapes the curve
tending to flatten it out when vorticity increases (which is the case of well-
resolved LES) while ensures a strong effect on most of the scales when the
field is poorly resolved, as from picture 1(a).

Θ =
2 < Ū >

2

< Ū >
2
+ l2< ω >2

(3)
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l is taken as twice the characteristic length of the test case and Ū is the
velocity magnitude .<> denotes a spatial average.
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Fig. 1. Algebraic fUAD function (a) and Volume pdf integrated from Ψ to 1 (b).

3 Applications and results

The approach described in section 2.3 has been tested on two different test
cases, the plane channel flow and the round jet flow. Five different hexahedral
structured grids, in the following named from 1 to 5, have been used to test
the sensitiveness of the UAD approach to different resolutions.
As we followed the definition of geometric ∆ proposed by Deardorff [1], we
decided to build up the grids applying an isotropic coarsening between each
one and the subsequent with a constant ratio

√
2, starting from a first grid

able to well-resolve the flow field. Considering that grid 1 is the starting grid,
its is quite simple to observe that grid 5 presents cells with the geometric
∆ 4 times larger. Details regarding each test case grids are reported in the
next sections. The time step for the simulations has been set constant and has
been chosen to guarantee a Courant number lesser than 0.5; as the time step
has a filtering effect over the solution, it has been scaled in the same way the
physical dimensions have been coarsened.
The simulations have been performed on a finite volume solver in Gaussian

CUAD 0 2 4 8 16 32

Table 1. CUAD constants used in the preliminary analysis.

formulation using the Crank-Nicholson second order scheme in time and a
centred second order scheme in space.
A first set of preliminary simulations have been carried out, combining the 4
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models with 6 different values of the constant CUAD , as in table 1. A response
surface to value the quality of the results has been generated through the
interpolation of the starting matrix using ordinary kriging [10] with the goal
to find an optimum value for each model.
A second set of simulations has then been performed, combining the 4 different
models with the 5 computational grids. As in the preliminary case, a response
surface has been generated interpolating the resulting matrix with ordinary
kriging to describe the behaviour of the cost function F:

F = 0.5εU + 0.25εd + 0.25εs (4)

εU =

∫

V

(ULES − UDNS)2

U2

DNS

dV (5)

εd = 3
√

εuu · εvv · εww (6)

εs =
√

εuv · εuw (7)

εij =

∫

V

(RLES
ij − RDNS

ij )2

(RDNS
ij )2

dV (8)

where U is the time averaged streamwise velocity and Rij represents the
generic component of the Reynolds stress tensor.
The main concern about kriging application was the definition of a consistent
length scale regarding the constant, the models and the grids. First of all,
in each analysis the length scale has been set equal for both axes, as to get
square matrices, then we defined different partitions for each parameter. When
dealing with the models, the length scale has been equally divided while when
dealing with the constant it has been linearly divided with the constant value.
The same approach has been conserved for the parameter set on the grid
length scale, which has been divided linearly with the coarsening ratio.

Plane Channel Flow

The results of the simulations in a plane channel flow at Reτ = 395 are here
illustrated.The computations were carried out on structured grids with con-
stant spacing in the streamwise and spanwise direction and hyperbolic spacing
in the wall-normal direction. The ratio between contiguous cells volumes is
always lesser than 1.1 and it tends towards the unity approaching the wall.
The main characteristics of the grids are presented in table 2. In the present
analysis, the x axis is coincident with the streamwise direction, the y axis
with the wall-normal direction, the z axis with the spanwise direction and the
computational domain is taken equal to 2πh x 2h x πh, being h the channel
half-width.
As clear from the data in the table, not all the grids are able to capture the
necessary scales to correctly simulate the flow at the wall: since our research
activity aimed at checking how error behaves more than trying to reduce the
error, we decided to strictly keep the concept of isotropically coarsening the
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grid even in the wall-normal direction.
The one-equation and the Smagorinsky model do not behave correctly ap-
proaching at the wall, as νLES doesn’t correctly scale: for this reason, the
models have been corrected with the addition of a Van Driest damping term.

Grid nr of cells ∆x+ ∆y+ ∆z+

1 80 X 100 X 100 30 1.5 → 15 12
2 56 X 70 X 70 42.5 2.1 → 21 17
3 40 X 50 X 50 60 3 → 30 24
4 28 X 35 X 35 85 4.2 → 42 34
5 20 X 25 X 25 120 6 → 60 48

Table 2. Main characteristics of the grids used for the Plane Channel Flow case.

The results are compared with the DNS data by Kim [11] and the statis-
tical moments contributing to the definition of the cost function F have been
normalised over the computed uτ .
Two series of simulations have been carried out; in the first one both the
convective and the diffusive term were discretised with centred second-order
schemes, while in the second one they were discretised with a centred fourth-
order scheme. Both sets of preliminary simulations where performed on grid
3 to limit the computational resources needed.
Figure 2 shows the cost function F isocontours normalised in each row by
the value of F at CUAD = 0. The application of UAD in combination with
the Van Driest damping deteriorates the quality of the results, and the phe-
nomenon gets worse increasing the value of CUAD : this is probably due to the
fact that the beneficial effect that the Van Driest damping performs combined
to the model, which imposes a decrease of ∆̄ towards the wall, is counteracted
by UAD which increases the ∆̄ dimensions in the boundary layer. This be-
haviour is connected to a sensible deterioration in uτ predictions for the model
corrected with the Van Driest Damping.A sensible reduction of the error is
instead observed for both the discretisation schemes when UAD is combined
with variational multi-scale model, while WALE produces more accurate re-
sults only when second-order schemes are used. These results may be justified
by the fact that in the variational multiscale-approach the model acts only
over the small scales, while the WALE model acts on all the flow scales: a
high value of the constant CUAD combined with a high order scheme makes
the model error to mask completely the smaller numerical error.
The optimum value for the constant CUAD has been chosen through a mini-
mum analysis of the cost function, represented by the dotted line in figure 2
(a) and (b): as the best value of CUAD for the models corrected with the Van
Driest damping is actually 0, we anyway set a symbolic value of 1 as, although
we expect that the results will be worst than without the application of UAD,
it is of a certain interest to test the stability of the error when ∆̄ is modified.



Reduced interactions between error sources through anisotropic filtering 7

Following the optimum CUAD value definition for each model, a database of
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Fig. 2. F response surface on grid 3 using second (a) and fourth (b) order schemes.

simulations has been generated crossing the model applied and the grid reso-
lution. The same database has been replicated without the anisotropic filter
and furthermore a set of coarse DNS has been simulated too, for a result of
45 simulations for each of the discretisation schemes used.
The uτ response surface resulting from second order traditional LES database
is presented in fig. 3 (a): the data, normalised on the uτ value computed by
Kim [11], look quite similar for all the models and deteriorate as the grid
coarsens. Models used in combination with the Van Driest damping produce
slightly more accurate results as scale resolution decreases when compared to
the other models or coarse DNS. UAD approach combined with the optimum
constant didn’t perturb significantly uτ predictions, while the fourth order
scheme application produces more accurate results as shown in fig. 3 (b).
In picture 4 the cost function F normalised with the corresponding values
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Fig. 3. second order uτ response surface (a) and uτ ratio between second and fourth
order prediction (b).

computed through standard LES is presented. The most interesting result is
a quite good consistency for the “refined” part of the response surface, mean-
ing that the approach is actually able to adapt itself through the variation of
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the global shape parameter Θ to the correct level of smoothing. Conversely,
the main problem emerging from this analysis is indeed that the behaviour
becomes quite unpredictable when UAD is combined with coarse grids and
it’s arguable if this happens for a poor resolution of the boundary layer or if
the approach does not work properly in presence of a large numerical error.
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Fig. 4. error response surface of UAD LES compared to traditional LES for second
order (a) and fourth order (b) accuracy.

Round Jet Flow

In this section, the results of the analysis carried out on a round jet flow test
case are presented. A maximum Reynolds number, referenced to the peak
of the mean streamwise velocity profile and the initial jet diameter, up to
ReD = 21000, has been considered. The computations have been performed
on five different structured grids, on the same regular domain defined by
[0, 15D] × [−5.5D, 5.5D] × [−5.5D, 5.5D], the most refined one being discre-
tised as the finest grid of Sagaut and Lê [12]. The discretisation on each cross
section (y, z planes in Table 3) along the streamwise direction has been kept
constant in the jet zone, while gaussian-shaped coarsening has been applied
outwards. Along the streamwise direction x, a constant increment has been
applied, while the dimension of the first cell layer has been chosen in order to
comply with the advice in [13, 14]. More details are summarised in table 3.
As far as the jet inlet boundary surface is concerned, particular attention has
been paid to the correct setting of the velocity profile: a flat, 1m/s stream-
wise velocity profile has been imposed outwards the jet region, while inside a
hyperbolic-tangent function [13] has been set:

u (r)

Uref

=
1

2

(

1 − tanh

[

rjet

4θjet

{

r

rjet

−
rjet

r

}])

. (9)

Moreover, a white-noise-spectrum turbulent fluctuation has been imposed on
the whole inlet surface reference velocity field, adding up to, respectively, 4%
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Jet zone Outwards Jet inlet Outlet
Grid nr of cells ∆y = ∆z ∆y = ∆z ∆x ∆x

1 100 X 120 X 120 D/36 1.00D D/16 0.3D
2 70 X 85 X 85 D/25 1.15D D/12 0.4D
3 50 X 60 X 60 D/18 1.35D D/8 0.6D
4 35 X 42 X 42 D/13 1.60D D/6 0.85D
5 25 X 30 X 30 D/9 1.90D D/4 1.2D

Table 3. Main characteristics of the grids used for the Round Jet case.

along the x axis and 0.1% in the radial directions, in agreement with the
tabulated experimental data [15].

The results of the computations have been compared with detailed ex-
perimental data from the Ercoftac Database [15]. Since the test case doesn’t
present a periodic behaviour in the streamwise direction, the cost function F

has been evaluated as the mean value of the cost functions defined on four yz
planes at x/D = 0.2; 2.0; 4.0; 8.0 respectively.
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Fig. 5. F response surface on grid 3 (a) and on the five grids with optimum CUAD

values (b) for the Round Jet test case.

Figure 5 (a) shows the response surface of the cost function F on grid 3,
crossing the four models and the six CUAD values previously introduced, and
normalised as in section 3. The thick dotted line identifies the optimum value
of CUAD on the response surface, depending on the model chosen. From the
figure, the reduction in cost function F due to UAD is strong for each of the
models, and approaches 30% and 50% circa, for the variational multi-scale
and the one-equation models, respectively. Another interesting feature is that
the optimum value of CUAD seems to be quite independent on the model cho-
sen, and anyway it is generally included in the [2, 4] range. The only slightly
different behaviour is seen for the coupling of UAD with the WALE model,
where the optimum is reached at CUAD = 12 circa; nevertheless, in this case
the behaviour of UAD is much more straight along the CUAD range, and a
reduction in F by approximately 10% can be achieved even for it being in the
optimum range identified for the other models. Lastly, the UAD performance
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then deteriorates as CUAD increases to values greater than eight.
The behaviour of the error cost function F on each grid, obtained setting
the optimum CUAD value for each of the models considered, has been recon-
structed through kriging and plotted in figure 5 (b), normalised with respect
to traditional LES. As it appears from the response surface, the application
of UAD produces a stable global error reduction as the grid is refined; the to-
tal reduction in cost function adding up to more than 50% on the plain LES
value. On the other side, a drawback of the UAD seems that, the approach
unpredictably affects the results on coarse grids, as – even if in a framework of
increasing error for each of the models – it appears much more stable when in
presence of VMS or WALE, while instead the normalised cost function rapidly
climbs up to values greater than 4 when adopting the one-equation and the
Smagorinsky models.

4 Concluding Remarks

A local extension of the subfilter wavelength ∆̄ in LES has been investigated.
Different grid resolutions, models and discretisation schemes have been con-
sidered on two well established test cases and the results have been compared
to DNS/experimental data. The analysis of the error cost function stresses
how this approach is beneficial for shear flows and can be effective even for
wall-bounded flows, if the model can correctly scale νLES at the wall. The
approach looks able to adapt itself to produce adequate wavelength extension
when dealing with reasonable physical resolution, while it leads to unpre-
dictable results when applied to really coarse grids: as a high Θ induces a
strong effect even at low Ψ values, probably the large scales of motion come
to be affected by UAD at low resolution.
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