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Abstract10

The integration of the stiff ODE systems associated with chemical ki-11

netics is the most computationally demanding task in most practical com-12

bustion simulations. The introduction of detailed reaction mechanisms in13

multi-dimensional simulations is limited by unfavorable scaling of the stiff14

ODE solution methods with the mechanism’s size. In this paper, we com-15

pare the efficiency and the appropriateness of direct and Krylov subspace16

sparse iterative solvers to speed-up the integration of combustion chemistry17

ODEs, with focus on their incorporation into multi-dimensional CFD codes18

through operator splitting. A suitable preconditioner formulation was ad-19

dressed by using a general-purpose incomplete LU factorization method for20

the chemistry Jacobians, and optimizing its parameters using ignition delay21

simulations for practical fuels. All the calculations were run using a same ef-22

ficient framework: SpeedCHEM, a recently developed library for gas-mixture23

kinetics that incorporates a sparse analytical approach for the ODE system24

functions. The solution was integrated through direct and Krylov subspace25

iteration implementations with different backward differentiation formula in-26

tegrators for stiff ODE systems: LSODE, VODE, DASSL. Both ignition de-27

lay calculations, involving reaction mechanisms that ranged from 29 to 717128

species, and multi-dimensional internal combustion engine simulations with29

the KIVA code were used as test cases. All solvers showed similar robustness,30

and no integration failures were observed when using ILUT-preconditioned31
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Krylov enabled integrators. We found that both solver approaches, coupled32

with efficient function evaluation numerics, were capable of scaling computa-33

tional time requirements approximately linearly with the number of species.34

This allows up to three orders of magnitude speed-ups in comparison with35

the traditional dense solution approach. The direct solvers outperformed36

Krylov subspace solvers at mechanism sizes smaller than about 1000 species,37

while the Krylov approach allowed more than 40% speed-up over the direct38

solver when using the largest reaction mechanism with 7171 species.39

Keywords: chemical kinetics, sparse analytical Jacobian, Krylov iterative40

methods, preconditioner, ILUT, stiff ODE, combustion, SpeedCHEM41

1. Introduction42

The steady increase in computational resources is fostering research of43

cleaner and more efficient combustion processes, whose target is to reduce44

dependence on fossil fuels and to increase environmental sustainability of the45

economies of industrialized countries [1]. Realistic simulations of combus-46

tion phenomena have been made possible by thorough characterization and47

modelling of both the fluid-dynamic and thermal processes that define local48

transport and mixing in high temperature environments, and of the chemical49

reaction pathways that lead to fuel oxidation and pollutant formation [2]. De-50

tailed chemical kinetics modelling of complex and multi-component fuels has51

been achieved through extensive understanding of fundamental hydrocarbon52

chemistry [3] and through the development of semi-automated tools [4] that53

identify possible elementary reactions based on modelling of how molecules54

interact. These detailed reaction models can add thousands of species and55

reactions. However, often simple phenomenological models are preferred56

to even skeletal reaction mechanisms that feature a few tens/hundreds of57

species in “real-world” multidimensional combustion simulations, due to the58

expensive computational requirements that their integration requires, even59

on parallel architectures, when using conventional numerics. The stiffness of60

chemical kinetics ODE systems, caused by the simultaneous co-existence of61

broad temporal scales, is a further complexity factor, as the time integrators62

have to advance the solution using extremely small time steps to guarantee63

reasonable accuracy, or to compute expensive implicit iterations while solv-64

ing the nonlinear systems of equations [5].65

66
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Many extremely effective approaches have been developed in the last few67

decades to alleviate the computational cost associated with the integration of68

chemical kinetics ODE systems for combustion applications, targeting: the69

stiffness of the reactive system; the number of species and reactions; the70

overall number of calculations; or the main ordinary differential equations71

(ODE) system dynamics, by identifying main low-dimensional manifolds [6–72

16]. A thorough review of reduction methods is addressed in [2]. From the73

point of view of integration numerics, some recent approaches have shown74

the possibility to reduce computational times by orders of magnitude in com-75

parison with the standard, dense ODE system integration approach, without76

introducing simplifications into the system of ODEs, but instead improving77

the computational performance associated with: 1) efficient evaluation of78

computationally expensive functions, 2) improved numerical ODE solution79

strategy, 3) architecture-tailored coding.80

As thermodynamics-related and reaction kinetics functions involve expen-81

sive mathematical functions such as exponentials, logarithms and powers, ap-82

proaches that make use of data caching, including in-situ adaptive tabulation83

(ISAT) [17] and optimal-degree interpolation [18], or equation formulations84

that increase sparsity [19], or approximate mathematical libraries [20], can85

significantly reduce the computational time for evaluating both the ODE sys-86

tem function and its Jacobian matrix. As far as the numerics internal to the87

ODE solution strategy, the adoption of sparse matrix algebra in treating the88

Jacobian matrix associated with the chemistry ODE system is acknowledged89

to reduce the computational cost of the integration from the order of the90

cube number of species, O(n3
s), down to a linear increase, O(ns) [21–23].91

Implicit, backward-differentiation formula methods (BDF) are among92

the most effective methods for integrating large chemical kinetics problems93

[24, 25] and packages such as VODE [26], LSODE [27], DASSL [28] are widely94

adopted. Recent interest is being focused on applying different methods that95

make use of Krylov subspace approximations to the solution of the linear sys-96

tem involving the problem’s Jacobian, such as Krylov-enabled BDF methods97

[29], Rosenbrock-Krylov methods [30], exponential methods [31]. As far as98

architecture-tailored coding is concerned, some studies [32, 33] have shown99

that solving chemistry ODE systems on graphical processing units (GPUs)100

can significantly reduce the dollar-per-time cost of the computation. How-101

ever, the potential achieveable per GPU processor is still far from full opti-102

mization, due to the extremely sparse memory access that chemical kinetics103

have in matrix-vector operations, and due to small problem sizes in compari-104
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son to the available number of processing units. Furthermore, approaches for105

chemical kinetics that make use of standardized multi-architecture languages106

such as OpenCL are still not openly available.107

108

Our approach, available in the SpeedCHEM code, a recently developed re-109

search library written in modern Fortran language, addresses both issues110

through the development of new methods for the time integration of the111

chemical kinetics of reactive gaseous mixtures [18]. Efficient numerics are112

coupled with detailed or skeletal reaction mechanisms of arbitrarily large113

size, e.g., ns ≥ 104, to achieve significant speed-ups compared to traditional114

methods especially for the small-medium mechanism sizes, 100 ≤ ns ≤ 500,115

which are of major interest to multi-dimensional simulations. In the code,116

high computational efficiency is achieved by evaluating the functions associ-117

ated with the chemistry ODE system throughout the adoption of optimal-118

degree interpolation of expensive thermodynamic functions, internal sparse119

algebra management of mechanism-related quantities, and sparse analytical120

formulation of the Jacobian matrix. This approach allows a reduction in121

CPU times by almost two orders of magnitude in ignition delay calculations122

using a reaction mechanism with about three thousand species [34], and was123

capable of reducing the total CPU time of practical internal combustion en-124

gine simulations with skeletal reaction mechanisms by almost one order of125

magnitude in comparison with a traditional, dense-algebra-based reference126

approach [35, 36].127

In this paper, we describe the numerics internal to the ODE system solution128

procedure. The flexibility of the software framework allows investigations of129

the optimal solution strategies, by applying different numerical algorithms130

to a numerically consistent, and computationally equally efficient, problem131

formulation. Some known effective and robust ODE solvers, as LSODE [27],132

VODE [26], DASSL [28], used for the combustion chemistry integration [18],133

are based on backward differentiation formulae (BDF) that include implicit134

integration steps, requiring repeated linear system solutions associated with135

the chemistry Jacobian matrix, as part of an iterative Newton procedure.136

Based on the same computational framework and BDF integration proce-137

dure, the effective efficiency of the sparse direct and preconditioned iterative138

Krylov subspace solvers reported in Table 1 was studied. To consider the139

effects of reaction mechanism size, a common matrix of reaction mechanisms140

for typical hydrocarbon fuels and fuel surrogates, spanning from ns = 29 up141

to ns = 7171 species was used, whose details are reported in Table 1.142
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The paper is structured as follows. A description of the modelling ap-143

proach adopted for the simulations is reported, including the major steps of144

the BDF integration procedure. Then, a robust preconditioner for the chem-145

istry ODE Jacobian matrix is defined, as the result of the optimization of a146

general-purpose preconditioner-based incomplete LU factorization [37, 38].147

Integration of ignition delay calculations at conditions relevant to practi-148

cal combustion systems is compared for the range of reaction mechanisms149

chosen, at both solver techniques and with different BDF-based stiff ODE150

integrators. Finally, the direct and Krylov subspace solvers are compared for151

modeling practical internal combustion engine simulations.152
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2. Description of the numerical methodology153

2.1. A sparse, analytical Jacobian framework for chemical kinetics154

Significant advancements in combustion chemistry codes have occurred155

in the last few years, but comparison with earlier implementations [46] is not156

a straightforward task. Often access to the source codes is unavailable, and157

insufficient description of the numerical algorithms or to the architecture-158

tailored optimizations is provided. Furthermore, the size of the chemical ki-159

netics problem is typically for small-medium systems (ns ≤ 104) [47], which160

makes the adoption of advanced parallel algorithms quite inefficient. Thus,161

meaningful comparisons ofdifferent numerical methods should be done adopt-162

ing a same code framework, with the same level of optimization, on the same163

computing architecture.164

The SpeedCHEM chemistry code [18] is a computationally efficient chemical165

kinetics library developed by the authors. The library, written in Modern166

Fortran standard [48], and compiled with the portable Fortran frontend of167

the GNU suite of compilers [49], exploits a sparse, analytical formulation for168

all the chemical and thermodynamic functions involved in the description169

of the reacting system. The library includes thermal property calculation,170

mixture states, and reaction kinetics, for the analytical calculation of the171

Jacobian matrix associated with the chemical kinetic ODE system. Inter-172

nal BLAS routines have been specifically developed in order not to rely on173

architecture-dependent or copyright-protected libraries, while exploiting the174

vectorization features of the language for most low-level code tuning, and175

leaving most of architecture-related optimization to the compiler.176

177

Still a number of low-level optimizations are needed to enable efficient evalua-178

tion of the functions that describe the evolution of the species in the reacting179

environment, as well as their derivatives. Polymorphic procedure handling180

has been implemented to enable compliance with a number of different im-181

plicit stiff ODE integrators, including VODE [26], LSODE [27], DASSL [28],182

RADAU5 [5], RODAS [5]. Where not originally available, capability for a183

direct, sparse solution of the linear system associated with the implicit ODE184

integration step has been implemented using the code’s internal sparse alge-185

bra library.186

Chemical Kinetics problem. We refer to the Chemical Kinetics problem as the
initial value problem (IVP) where the laws that define temporal evolution of

8



mass fractions of a set of species in a reactive environment are described as
the result of the reactions involving them. Considering a set of ns species,
i = 1, ..., ns and nr reactions, j = 1, ..., nr, every generic reaction is defined
as the interaction between a set of reactant species and a set of products:

ns∑
i=1

ν ′j,iMi 

ns∑
k=1

ν ′′j,kMk, j = 1, ..., nr; (1)

where Mi represents species names, and matrices ν ′ and ν ′′ contain the stoi-187

chiometric coefficients of the species involved in the reactions. As the number188

of species involved in every reaction is typically small, both these matrices189

can be extremely sparse. Every reaction features a reaction progress vari-190

able rate, qj, that defines, for the given thermodynamic state of the reactive191

system, its tendency towards (forward, qf ) producing new products or (back-192

ward, qb) producing reactants:193

qj = qf,j − qb,j = kf,j

ns∏
i=1

(
ρYi
Wi

)ν′j,i
− kb,j

ns∏
i=1

(
ρYi
Wi

)ν′′j,i
, (2)

where kf,j and kb,j are reaction rate constants, of the type either k = f (T ),194

k = f (T, p) or k = f (T, p,Y), depending on the complexity of the reaction195

formulation. The products that involve species concentrations Ci are calcu-196

lated using mass fractions Yi, molecular weights Wi, and reactor density ρ.197

The rate of change of every species’ mass fraction is given by:198

dYi
dt

= Ẏi =
Wi

ρ

nr∑
j=1

[(
ν ′′j,i − ν ′j,i

)
qj
]
. (3)

Mass conservation,
∑

i Ẏi = 0 or
∑

i Yi = 1, is guaranteed if atom balance199

in every reaction is verified, i.e.,
∑

i ν
′
j,iEk,i =

∑
i ν
′′
j,iEk,i∀j = 1, ..., nr, k =200

1, ..., ne, where the matrix Ek,i contains the number of atoms of element k in201

species i. While the chemical kinetics equations can be incorporated in any202

reactive environment formulation, a constant-volume reactor is used, as this203

is the assumption that is typically adopted when doing operator splitting in204

multi-dimensional combustion codes [50–53], or for ignition delay calculations205

in shock tubes:206

dT

dt
= Ṫ = − 1

c̄v

ns∑
i=1

UiẎi
Wi

. (4)

9



Here, c̄v represents the mass-based mixture averaged constant volume spe-207

cific heat, and Ui = Ui(T ) are the molar internal energies of the species at208

temperature T . Note however that the approach is also applicable to the209

sparser, constant-pressure reactor formulation [19].210

Sparse matrix algebra. Elementary reactions according to the theory of ac-211

tivated complex represent the probability that collisions among molecules212

result in changes in the chemical composition of the colliding molecules [54].213

Practical combustion mechanisms can incorporate third bodies, but most re-214

actions typically follow the common initiation, propagation, branching, ter-215

mination pathway structure. This means that, while most species interact216

with the hydrogen and oxygen radicals of the hydrogen combustion mecha-217

nism, large hydrocarbon classes have typically just few interactions among218

themselves. Looking at the Jacobian matrix J of different reaction mecha-219

nisms, as represented in Figure 1, it is clear that the basic hydrogen combus-220

tion mechanism, that typically involves the 10-20 smaller species depending221

on the formulation [55], is almost dense, and can represent a significant part222

of the overall reaction mechanism especially when it is very skeletal. How-223

ever, as more hydrocarbon classes are included in the mechanism, the overall224

sparsity increases significantly, and can be more than 99.5% for the large225

reaction mechanisms.226

227

Accordingly, a sparse matrix algebra library was coded to model the stoi-228

chiometric index matrices ν ′, ν ′′(nr×ns), the element matrix E(ns×ne), the229

ODE system Jacobian matrix J(ns + 1 × ns + 1), as well as all the inter-230

nal calculation matrices involving analytical derivatives such as ∂q/∂Y, for231

instance. The Compressed Sparse Row (CSR) format [56, Chapt. 2] was232

adopted as the standard to model matrix-vector calculations, matrix-matrix233

calculations, as well as other overloaded operator functions including sum,234

scalar-matrix multiplication, comparison and assignment. Even with dynam-235

ically allocated matrix structures, the sparsity structures of the matrices are236

only calculated once at the reaction mechanism initialisation, as they do not237

change. It was chosen not to consider any dynamic reaction mechanism re-238

duction, to avoid any additional error in the solution procedure. Finally, full239

encapsulation of the overloaded methods allows their easy implementation in240

other architectures such as GPUs.241

242

As most ODE integrators for solving stiff problems perform implicit inte-243

10



10
1

10
2

10
3

10
4

10
−1

10
0

number of species, n
s
 [−]

Ja
co

bi
an

 s
pa

rs
ity

 [−
]

ERC n−heptane

LLNL n−heptane

LLNL n−alkanes

Figure 1: Sparsity of the Jacobian matrix versus reaction mechanism dimension.

gration steps that require evaluation of the Jacobian matrix and the solution244

of a linear system, or its composition/scaling with some diagonal matrix (see,245

e.g., [5, §8.8]), routines that perform direct solution of a sparse linear system246

were implemented using a standard four-step solution method: 1) optimal247

matrix ordering using the Cuthill-McKee algorithm [57, 58, §4.3.4], 2) sym-248

bolic sparse LU factorization, 3) numerical LU factorization, 4) solution by249

forward and backward substitution. The first two steps of the procedure are250

only evaluated at the problem initialization, as they only involve the matrix251

sparsity pattern.252

Figure 2 shows the effect of optimal matrix reordering to reduce fill-in253

during matrix factorization of a large reaction mechanism. Even if the origi-254

nal sparsity of the Jacobian matrix is extremely high, the LU decomposition255

destroys almost all of it when rows and columns are not correctly ordered.256

The fill-in phenomenon, i.e. the number of elements in a matrix that switch257

from having a zero value to a non-zero value after application of an algorithm258

[59], cannot be avoided when using direct solution methods, and tends to be-259

come significant for large reaction mechanisms. However, if the matrix is260

properly ordered, the number of non-zero elements in the LU decomposition261

can be not bigger than 2-3 times the number of non-zero elements in the non-262

decomposed matrix. After the Jacobian matrix has been decomposed into a263

11



lower and an upper triangular matrix, there is no need for matrix inversion264

as the linear system can be eventually solved in two steps by simple forward265

and backward substitution:266

Ax = b −→ LUx = b −→ y = L−1b −→ x = U−1y. (5)

Maximizing the use of sparse algebra, and consistently using the same267

CSR format for all calculations throughout the code, including for building268

the analytical Jacobian matrix, allows efficient memory usage and minimiza-269

tion of cache misses, that have an impact on the total CPU time. This270

provides a universal formulation that does not require reaction-mechanism-271

dependent tuning, and avoids the use of symbolic differentiation tools or272

reaction-mechanism-dependent routines that would require recompilation of273

the code for every different reaction mechanism used.274

Optimal-degree interpolation. Optimal-degree interpolation was implemented275

as a procedure to speed-up the evaluation of thermodynamic functions that276

involve both species and reactions. Most thermodynamic- and chemistry-277

related are temperature-dependent functions, and include powers, exponen-278

tials, fractions, that require many CPU clock cycles to be completed [2].279

Functions describing reaction behavior span from simple reaction rate formu-280

lations such as the universally adopted extended Arrhenius form, to equilib-281

rium constant formulations that are required to compute backward reaction282

rates, to more complex reaction parameters such as the fall-off centering fac-283

tor in Troe pressure-dependent reactions [60]. Functions describing species284

and mixture thermodynamics, such as the JANAF format laws adopted in285

the present code, typically feature polynomials of temperature powers and286

logarithms.287

As memory availability is not a restriction in modern computing architec-288

tures, caching values of these functions at discretized temperature points, and289

interpolating using simple interpolation functions, proved to be extremely ef-290

ficient.291

Also the derivatives with respect to temperature were evaluated analyti-292

cally and tabulated at initialization at equally-spaced temperature intervals293

of ∆T = 10K. This tabulation allows different degrees of the interpola-294

tion, to be calculated only on the basis of the relative position of the current295

temperature value within the closest neighboring points [18]:296

f (T ) = (Tn+1 − T ) /(Tn+1 − Tn) = (Tn+1 − T ) /∆T . (6)

12
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At the initialization of every function’s table, an optimal degree of interpo-297

lation is cached, defined as the minimum interpolation degree that allows298

the interpolation procedure to predict the function’s values within a required299

relative accuracy, set as εtab ≤ 10−6 in this study, corresponding to 6 exact300

significant digits. The optimal-degree interpolation procedure also prevents301

Runge’s oscillatory phenomenon by imposing an accuracy check on the in-302

terpolated function.303

Performance comparisons between interpolated and analytically evaluated304

thermodynamic functions are shown in Figure 3 using the reaction mecha-305

nisms in Table 1. The speed-up factor achieved in CPU time when calling dif-306

ferent thermodynamics-related functions using the tabulation-interpolation307

procedure rather than their analytical formulation is plotted against the num-308

ber of species in the reaction mechanism, ns. The plot shows that significant309

speed-ups of up to about two orders of magnitude are achieved for the most310

complex reaction properties, even for equilibrium-based reversible reactions311

and Troe fall-off reactions, whose number in a reaction mechanism can be312

much smaller than the total number of reactions. The speed-up achieved313

in evaluating species thermodynamic functions, whose nature is already of a314

polynomial formulation in the JANAF standard, is smaller but quickly adds315

up to about 2 times for practical reaction mechanisms.316

Overall code performance. Computational scaling of the most expensive func-317

tions associated with the integration of the chemical kinetics problem is re-318

ported in Figure 4. The results, taken on a desktop PC running on an Intel319

Core i5 processor with 2.40 GHz clock speed, and with 667 MHz DDR3 RAM,320

show less than linear computational performance scaling with the problem di-321

mensions of both the ODE vector function r.h.s. and of the Jacobian matrix,322

and approximately linear scaling, O(ns), for the complete sparse numerical323

factorization and solution of the linear system associated with the Jacobian324

matrix itself. The significant computational efficiency achieved through scal-325

ability and low-level optimization of the sparse analytical Jacobian approach326

is also evident as the CPU time required by Jacobian evaluation is always327

only between 5.4 and 12.0 times greater than the time needed for evaluat-328

ing the ODE system r.h.s. throughout all the reaction mechanisms tested,329

without any changes to the compiled code. With a standard finite difference330

approach computational cost is estimated to be between 29 and 7200 times331

greater than the r.h.s. evaluation for the smallest and the largest reaction332

mechanisms in the group of Table 1. Note that the number of reactions333
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Figure 3: Performance scaling of optimal-degree interpolation vs. analytical evaluation of
some temperature-dependent functions.

plays a direct role in the CPU time requirements of the ODE system func-334

tion and the analytical Jacobian, due to presence of reaction-based functions335

and sparse matrix-vector (spMxV) multiplications involving (nr×ns) matri-336

ces. However, Figure 4 shows that the cost of solving the linear system with337

the Jacobian, which is species-based, is usually dominant. Furthermore, in338

order to have a number of reactions large enough to break the linear scaling339

of the sparse algorithms on the Jacobian, nr would have to scale at least340

with O(n2
s), which would unrealistically correspond to having about ≈ 106

341

reactions per ≈ 103 species.342

The code results were previously validated against both homogeneous reactor343

simulations and multi-dimensional RANS simulation of engine combustion344

[18, 35], where it was shown that no differences could be observed between345

the SpeedCHEM solution and the solution obtained using a reference research346

chemistry code, when using the same integration method and tolerances.347

Profiling of ignition delay calculations showed how much of the total CPU348

time was spent among the most important tasks, as represented in Figure349

5. The linear system solution was still the most computationally demanding350

task across all mechanism sizes, requiring from roughly 40% up to more than351

80% of the total CPU time as the problem dimensions increase. All the other352

computationally demanding tasks, such as thermodynamic property evalu-353
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different reaction mechanisms: r.h.s, Jacobian matrix, direct solution of the linear system
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ations, sparse matrix algebra, law of mass action, that make up the most354

expensive parts of the r.h.s and Jacobian function calls, demanded less than355

20% of the total CPU time, with the rest of the time devoted to internal356

ODE solver operation, as well as dynamic memory allocation.357

Finally, RAM memory requirements were found to scale slightly less-than-358

linearly with mechanism dimensions, as an effect of increased Jacobian spar-359

sity for larger hydrocarbon dimensions. Tabulation of temperature-dependent360

functions appears to be the most storage-demanding feature, whose require-361

ments linearly increase with the number of species (for all the mechanisms362

tested, the numbers of reactions always followed Lu and Law’s rule-of thumb,363

nr ≈ 5ns, [2]). However, only about 86MB of RAM were needed by the364

SpeedCHEM solver at the largest mechanism. Considering that tabulated365

data requirements undergo read-only access during the simulations and are366

shared when parallel multi-dimensional calculations are run, these require-367

ments appear to be negligible compared to current memory availability, even368

on personal desktop machines.369
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3. Solution of the chemistry ODE Jacobian using Krylov subspace370

methods371

Krylov subspace methods represent a class of iterative methods for solving372

linear systems that feature repeated matrix-vector multiplications instead of373

using matrix decomposition approaches of the stationary iterative methods374

(see, e.g., [47, 61]). These solvers find extensive applications in problems375

where building the system solution matrix is expensive, or the matrix it-376

self is even not known, or where sufficient conditions [62, Chapt. 7] for the377

convergence of the iteration matrix of the stationary iterative methods are378

not known. Their practical applicability is however constrained to special379

matrix properties, such as symmetry, or to the need to find appropriate pre-380

conditioning of the linear system matrix, to guarantee convergence of the381

method [61, Chapt. 2,3]. Iterative methods such as GMRES [63] are guar-382

anteed convergence to the exact solution in n iterations, n being the max-383

imum Krylov subspace dimension, equal to the linear system dimensions.384

Thus, if no strategy to accelerate their convergence rate towards the solu-385

tion within a reasonable tolerance is used, their computational performance386

can be bad. Furthermore, round-off and truncation errors intrinsic to float-387

ing point arithmetic can make the iterations numerically unstable, especially388

when the problem is ill-conditioned, i.e., its solution is extremely sensitive to389

perturbations. These problems have limited their implementation in widely390

available ODE integration packages.391

392

3.1. ODE integration procedure393

Backward differentiation formulae (BDF) methods [64] are amongst the394

most reliable stiff ODE integrators currently available, due to their ability to395

allow large integration time steps, even in presence of steep transients and the396

simultaneous co-existence of multiple time scales. The methods exploit the397

past behavior of the solution for improving the prediction of its future values.398

BDF methods are incorporated in many software packages for the integration399

of systems of ordinary differential equations (ODE) and differential-algebraic400

equations (DAE), including the LSODE package, the base integrator in this401

study. Given a general initial value problem (IVP) for a vector ODE function402

f in the unknown y of the form:403

ẏ = f(t,y), y(t = 0) = y0, (7)
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BDF methods build up the solution at successive steps in time, tn, n = 1, 2, ...,404

based on the solution at q previous steps tn−j, j = 1, 2, ..., q, with the following405

scheme:406

yn = y(tn) =

q∑
j=1

αjyn−j + hβ0ẏn, (8)

where the number of previous steps, q, also defines the order of accuracy of407

the method, αj and β0 are method-specific coefficients that depend on the408

order of the integration, and h = ∆t = tn − tn−1 is the current integration409

time-step. These methods are implicit as the evaluation of the ODE system410

function at the current timestep, ẏn = f(tn,yn), is needed to derive the411

solution. Thus, a nonlinear system of equations has to be solved, which412

accounts for most of the total CPU time during the integration:413

Fn(yn) = yn − hβ0f(tn,yn)− an = 0, (9)

where an is the sum of terms involving the previous time steps, an =
∑q

j=1 αjyn−j.414

VODE and DASSL incorporate variable αj and β0 coefficients whose values415

are updated based on the previous step sizes to allow for more effective re-416

usage of the previous values of the solution. However, the fixed coefficient417

form is more desirable in this study. LSODE handles the solution in Equation418

(9) through a variable substitution, xn = hẏn = (yn − an)/β0, as follows:419

Fn(xn) = xn − hf(tn, an + β0xn) = 0. (10)

This nonlinear system has to be solved using some version of the Newton-420

Raphson iterative procedure:421

x̃(1)
n = initial guess; (11)

∀m = 1, 2, ..., (until convergence) :

F′n(x̃(m)
n ) = I− hβ0J(tn, an + β0x̃

(m)
n ), (12)

solve: F′n(x̃(m)
n )rn = −Fn(x̃(m)

n ), (13)

x̃(m+1)
n = x̃(m)

n + r(m)
n ;

where the procedure is typically simplified by assuming that the Jacobian422

matrix does not change across the iterations (simplified-Newton method),423
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thus F′(x̃
(m)
n ) ≈ F′(x̃

(1)
n ), and Equation (13) provides the actual linear system424

that has to be solved throughout the whole time integration process. The425

first guess x̃
(1)
n for the solution is estimated applying an explicit integration426

step (predictor), which is then progressively modified towards the correct427

solution by the Newton procedure (corrector).428

3.2. Iterative linear system solution429

The introduction of preconditioned Krylov subspace linear system solu-430

tion methods into a so-called Newton-Krylov iteration, enters in Equation431

(13) without modifying the structure of the iterative Newton procedure, as432

the solution found by the Krylov subspace method is some approximation of433

the correct solution, and satisfies:434

F′n(x̃(m)
n )rn = −Fn(x̃(m)

n ) + εn, (14)

where the residual εn represents the amount by which the approximate so-435

lution rn found by the Krylov method fails to match the Newton iteration436

equation. It has been demostrated [65] that a simple condition, such as the437

imposition of a tolerance constraint, εn < δ, is enough to obtain any desired438

degree of accuracy in x̃
(m)
n at the end of the Newton procedure. The solution439

rn of Equation (14) can be seen as a step of the Inexact Newton method [66]440

if it satisfies441

‖εn‖ ≤ ηn
∥∥Fn(x̃(m)

n )
∥∥ (15)

for a vector norm ‖.‖. The parameter ηn is called a forcing term and it plays442

a crucial role to avoid the oversolving phenomenon, i.e., the computation443

of unnecessary iterations of the inner iterative solver (such as the Krylov444

method) [67]. The convergence of Inexact Newton methods is guaranteed445

under standard assumptions for F (see, e.g., [61, pp. 68,90],[68, p. 70]).446

447

The Krylov subspace method to iteratively solve the linear system of Eq.448

(14) was a scaled version of the GMRES solver by Saad [63] in LSODKR. The449

algorithm solves general linear systems in the form Ax = b, where A is a large450

and sparse n × n matrix, and x and b are n-vectors. The idea underlying451

the Krylov subspace methodology is that of refining the solution array by452

starting with an initial guess x0, and updating it at every iteration towards453

a more accurate solution. The linear system can be written in residual form,454

i.e., the exact solution is a deviation x = x0 + z from the initial estimate455
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(typically, x0 = 0), and given the initial residual r0 = b − Ax0 we have456

Az = r0. If the Krylov subspace κk(A, r0) generated at the k-th iteration by457

the matrix and the residual r.h.s. vector is the one defined by the images of458

r0 under the first k powers of A,459

κk(A, r0) = span
{
r0, Ar0, A

2r0, ..., A
k−1r0

}
, (16)

it can be demonstrated that the solution to the linear system lies in the460

Krylov subspace of the problem’s dimension, κn(A, r0). Thus, GMRES looks461

for the closest vector in this space to the solution, as the vector that satisfies462

the least squares problem:463

min
z∈κk(A,r0)

‖r0 − Az‖. (17)

The least squares problem of Equation (17) is solved using Arnoldi’s method464

[69], an algorithm that incrementally builds an orthonormal basis for κk(A, r0)465

at every iteration, i.e., a set of orthogonal vectors starting from a set of466

linearly independent vectors. The least squares problem can be solved in467

this equivalent, well-defined orthonormal space rather than on the undefined468

Krylov subspace. Overall, the number of operations per Krylov subspace iter-469

ation is expensive, as they involve a minimization process where the number470

of unknowns, n, is greater than the current dimensions of the process, k.471

However, this procedure can be effective if convergence to a desired tolerance472

can be reached in a number of Krylov iterations that is much smaller than473

the overall dimensions of the linear system. In practice, the convergence rate474

can only be accelerated to practical numbers of iterations if some sort of475

preconditioning is used (see, e.g., [70, 71]).476

3.3. Preconditioning of the linear system477

The practical applicability of preconditioned Krylov subspace methods478

typically depends much more on the quality of the preconditioner than on the479

Krylov subspace solver [63]. Preconditioning in the iterative solution implies480

computing the linear solution on a different, equivalent formulation, i.e., by481

left-multiplication of boths sides of the equation by a (left) preconditioner482

matrix:483

P−1Ax = P−1b, or (18)

Āx = b̄.
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The role of applying a preconditioner matrix is thus that of reducing the484

span of the eigenvalues of A, and substituting it with a new matrix that is485

possibly closer to identity, P−1 ≈ A−1, Ā ≈ I, for which convergence would486

be in a single step. However, every step of the Newton procedure of Equation487

(14) will take the following form:488

[P−1n F′n(x̃(m)
n )]rn = [P−1n (−Fn(x̃(m)

n ))] + εn. (19)

Thus, an additional direct linear system solution needs to be solved at every489

Newton iteration in the following form: c = P−1n (−Fn(x̃
(m)
n )). From Equa-490

tion (19) it is evident that it is extremely important that the appropriate491

preconditioner has a much simpler structure than the original matrix, so492

that its factorization and solution process for the r.h.s. can be kept as simple493

as possible. But, it has to approximate the inverse matrix sufficiently well494

so that the convergence of the Krylov procedure is improved in comparison495

to the non-preconditioned algorithm.496

497

Ultimately, if the problem’s eigenvalues span many orders of magnitude or498

the preconditioner is too rough, the number of iterations needed for the so-499

lution may make the method more expensive than a standard, direct solver,500

and the solver may fail, even if a solution exists. On the other hand, if the501

preconditioner provides a too accurate representation of the inverse of the502

linear system matrix, i.e., P ≈ A,P−1A ≈ I, the dimensions of the Krylov503

subspace, and similarly the method’s convergence rate, will tend to reduce,504

and the cost of building the preconditioned matrix and solving the r.h.s will505

typically be unviable.506

507

It has been shown that simple preconditioners such as Jacobi diagonal508

preconditioning are not accurate enough for chemical kinetics problems [72].509

Thus, we have chosen the Incomplete LU preconditioner with dual Trunca-510

tion strategy (ILUT) by Saad [38, 47]. This preconditioner approximates the511

original sparse matrix A by an incomplete version of its LU factorization.512

The factorization is incomplete in the sense that not all of the elements that513

should be included in the L and U triangular matrices are kept in the in-514

complete representation. This can significantly reduce the problem of fill-in,515

both making the factorization much sparser and faster to compute, while516

still maintaining the LU representation of matrix A within a reasonable de-517

gree of approximation. Elements are ‘dropped off’ the decomposition in case:518

22



1) their absolute value is smaller than the corresponding diagonal element519

magnitude, by a certain drop-off tolerance δ; 2) only the lfil elements with520

greatest absolute value are kept in every row and every column of the fac-521

torization, thus defining a maximum level of fill-in.522

It is interesting to notice that preconditioners for chemical kinetics problems523

can also be based on chemistry-based model reduction techniques such as524

the Directed Relation Graph (DRG) [29]. In this respect, usage of a full525

sparse analytical Jacobian formulation in companion with a purely algebraic526

preconditioner is promising as:527

• the chemistry Jacobian matrix already physically models mutual inter-528

actions among species. Its matrix’s sparsity structure is exactly the529

adjacency representation of a graph, where the path lengths among530

species (i.e., the intensity of their links) are the Jacobian matrix ele-531

ments, so it already contains the pieces of information that are modeled532

using techniques such as the DRG method [13];533

• in fact, dropping elements from the Jacobian matrix decomposition534

can be interpreted as the effort of removing the smallest contributions535

where species-to-species interactions are smaller;536

• application of element drop-off makes the matrix factorization faster,537

and its definition does not rely on chemistry-based considerations, such538

as reaction rate thresholds, whose validity would not be universal; fur-539

thermore, it retains its validity also in case the matrix to be factorized540

is scaled (for example when diagonal terms are added to the Jacobian541

matrix, such as in Equation (12)).542

Figure 7 compares complete and incomplete LU factorizations of the Jaco-543

bian matrix for a reaction mechanism with more than 1000 species [44], at544

a reactor temperature T0 = 1500K, pressure p0 = 50bar, and with uniform545

species mass fractions Yi = 1/ns, i = 1, ..., ns, so that all the elements in the546

Jacobian matrix were active. The ILUT decompositions have been obtained547

by keeping a constant maximum level of fill-in, lfil = ns, and using different548

drop-off tolerance values, δ = {0.1, 10−3, 10−6, 10−10}. As the Figure shows,549

the sparse complete LU decomposition leads to about 95% fill-in rate, fea-550

turing 40539 non-zero elements instead of the Jacobian’s 20765 non-zeroes.551

Note that the last line and the last column of the Jacobian matrix, as well552
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as that of the LU decomposition, are dense, as the energy closure equation553

does uniformly depend on all of the species.554

The ILUT factorization shows instead a significant reduction in the total555

number of non-zero elements, and at the drop-off value recommended by Saad556

[38], δ = 0.001, only 22.7% of the elements of the complete LU factorization557

survive the truncation strategy. The final number of elements monotonically558

increases when reducing the drop-off tolerance value; even at the smallest559

value of the threshold, δ = 10−10, where only the values that are at least560

ten orders of magnitude smaller than their diagonal element are cancelled.561

Thus, a significant 28.4% of elements are dropped from the complete LU ,562

conveying the extreme stiffness of the chemical kinetics Jacobian.563

4. Results564

The robustness and the computational accuracy of Krylov subspace meth-565

ods incorporated in stiff ODE solution procedures are compared with direct566

solution methods first for constant-volume, homogeneous reactor ignition cal-567

culations. The LSODES solver [27] is used for the direct, complete sparse568

solution of the linear system. An interface subroutine has been implemented569

to provide the Jacobian matrix, analytically calculated in sparse form using570

the chemistry library, columnwise as requested by the solver. Even if dense571

columns are requested by the solver interface, including zeroes, we provide the572

solver with the sparsity structure of the optimally permuted Jacobian matrix573

at every call. The direct linear system solution is then computed by LSODES574

at every step by applying complete sparse numerical LU factorization, and575

then forward and backward substitution. Symbolic LU factorization, i.e.,576

calculation of the sparsity structure of the L and U matrices, is computed577

by the solver once per call. The sparsity structure of the analytical Jaco-578

bian matrix provided by the SpeedCHEM library never changes throughout579

the integration, as zero values that may arise in case some species are not580

currently present, are replaced by the smallest positive number allowed by581

floating-point accuracy (2.2× 10−308, in double precision).582

The LSODKR version of the LSODE package is used to deal with a pre-583

conditioned Newton-Krylov implicit iteration. The LSODKR solver uses584

SPIGMR, a modified version of the preconditioned GMRES algorithm [63],585

that also scales the different variables so that the accuracy for every compo-586

nent of the solution array responds to the tolerance formulation of LSODE’s587

integration algorithm:588
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Figure 7: Comparison between sparsity pattern of complete and various incomplete LU
decompositions for the Jacobian matrix of a reaction mechanism with ns = 1034 [44].
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|ỹi − yi| ≤ RTOLi |yi|+ ATOLi. (20)

Here, RTOLi and ATOLi are user-defineable relative and absolute values,589

that have been kept constant in this study at 10−8 and 10−20, respectively.590

The LSODKR solver interfaces to the chemistry library in two steps. First,591

the Jacobian calculation and preprocessing phase is called; Saad’s ILUT pre-592

conditioner has been coupled to the SpeedCHEM library so that precondition-593

ing could be performed at the desired drop-off and fill-in parameter values,594

and eventually a sparse matrix object containing the L and U parts could be595

generated. As a second step, a subroutine for directly solving linear systems596

involving the stored copy of the preconditioner as the linear system matrix597

has been developed, using the chemistry code’s internal sparse algebra library598

[18]. Thus, LSODKR computes the Jacobian matrix only when the available599

copy is too old and unaccurate, and then performes multiple system solutions600

as requested by the r.h.s. of the preconditioned Krylov solution procedure of601

Eq. (19).602

603

As the critical factor that determines the total CPU time when integrat-604

ing chemical kinetics is the reaction mechanism size [2], we have investigated605

a range of different reaction mechanisms, from ns = 29 (skeletal n-heptane606

ignition for HCCI simulations [39]), to ns = 7171 (detailed mechanism for607

2-methyl alkanes up to C20 and n-alkanes up to C16 [45]), as summarized in608

Table 1. Skeletal or semi-skeletal mechanisms with 20-200 species of interest609

in multi-dimensional combustion simulations were included. A representa-610

tive multi-component fuel composition was used to activate more reaction611

pathways and keep most elements in the Jacobian matrix active. A stan-612

dardized matrix of 18 ignition delay simulations was established. The initial613

conditions mimic validation operating points for reaction mechanisms tai-614

lored for internal combustion engine simulations and span different pressures615

p0 = [20.0, 50.0]bar, temperatures T0 = [650, 800, 1000]K and fuel-air equiv-616

alence ratios, φ0 = [0.5, 1.0, 2.0]. The temporal evolution of all of the 18617

initial value problems has been integrated through a same total time interval618

of ∆t = 0.1s.619

4.1. Study of optimal preconditioner settings620

A parameter study involving the ILUT preconditioner drop-off tolerance621

δ and maximum fill-in parameter lfil was conducted to determine the optimal622
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tradeoff between computational complexity of the incomplete factorization,623

and the convergence rate of the Krylov solver. The matrix of ignition delay624

calculations was run serially on a single CPU for every reaction mechanism,625

spanning drop-off tolerances δ = [10−3, 10−6, 10−8, 10−10] and maximum fill-626

in parameters, expressed in terms of fraction of the Jacobian matrix size,627

ffil = [0.25, 0.50, 0.75, 1.0], where ffil = lfil/(ns + 1), corresponding to a to-628

tal of 288 ignition delay simulations per solver.629

In Figure 8, the computational performance of the simulations as a function630

of the two ILUT preconditioner settings is reported. CPU time values are631

normalized versus the corresponding simulation times requested by running632

the same ignition delay calculations using LSODES with the direct solver.633

Finally, response surfaces were reconstructed using ordinary kriging.634

The shape of the response surfaces was consistent for most reaction mecha-635

nisms. In particular, dependency on the drop-off tolerance order appeared to636

be much stronger than the maximum fill-in parameter. Only for the small-637

est and more dense reaction mechanisms, some slight effect of the maximum638

fill-in parameter was seen when the value was as small as about 25% of the639

row length, and the total computational time was increased due to the slower640

convergence rate of the Krylov iterative solver. As for the actual speed-up641

achievable using the Krylov subspace solver, it appears that no improvement642

could be obtained for reaction mechanisms smaller than ns ≈ 650. The643

total CPU time required by LSODKR was consistently faster than the di-644

rect solver for the largest and sparsest mechanisms. A significant speed-up645

of about two times was observed only for the largest reaction mechanism,646

with ns = 7171. More important, coupling of the ILUT preconditioner with647

the Krylov subspace solver proved to be an extremely robust and efficient648

methodology, as no solver convergence failures were observed throughout the649

whole set of simulations, even with tight integration tolerances. Ultimately,650

optimal settings for the ILUT preconditioner of δ = 10−8 and ffil = 0.8 were651

selected based on the following considerations:652

• local minima were consistently observed at drop-off tolerance values653

not larger than δ = 10−6. Coarser tolerances, such as of the order of654

δ = 10−3, as suggested by Saad [38], have too slow convergence rates655

for chemical kinetics problems, and the total simulation time was as656

much as 3-4 times bigger than with direct system solution;657

• minima appeared at different fill-in parameters ffil across different re-658

action mechanisms. The effect of this parameter on the overall-speed659

27



1.
4

1.
4

1.
45 1.
5 1.55

1.
6

drop-off tolerance order

m
ax

 r
ow

 le
ng

th

Wang PRF, n
s
=86, n

r
=392

-10 -8 -6 -3
25%

50%

75%

100%

min= 1.371 .5 2 2.
5 3 3.
5 4

drop-off tolerance order

m
ax

 r
ow

 le
ng

th

ERC PRF, n
s
=47, n

r
=142

-10 -8 -6 -3
25%

50%

75%

100%

min= 1.151.5

1.5
2

2

2.5
2.

5
3

3

3.5

3.
5

4

4

4.5 5

drop-off tolerance order

m
ax

 r
ow

 le
ng

th

ERC n-heptane, n
s
=29, n

r
=52

-10 -8 -6 -3
25%

50%

75%

100%

min= 1.24

1.
2

1.4 1 .
6

1.
8 2

2.
2

2.
4

2.
4

2.
6

2.
8

3 3.2

drop-off tolerance order

m
ax

 r
ow

 le
ng

th

ERC multiChem, n
s
=128, n

r
=503

-10 -8 -6 -3
25%

50%

75%

100%

min= 1.19

1.2

1.
2

1.
2

1.
3

1.3

1.4

1.4

1.5

1.5

1 .6
1. 7 1.8 1 .9

drop-off tolerance order

m
ax

 r
ow

 le
ng

th

LLNL n-heptane, n
s
=160, n

r
=1540

-10 -8 -6 -3
25%

50%

75%

100%

min= 1.12

1.
1

1 .
2 1.3

1 .4

1. 5

1.6

1.
7

drop-off tolerance order

m
ax

 r
ow

 le
ng

th

LLNL n-heptane, n
s
=654, n

r
=2827

-10 -8 -6 -3
25%

50%

75%

100%

min= 1.02

1 1.5
2 2 .5
3

drop-off tolerance order

m
ax

 r
ow

 le
ng

th

LLNL n-Alkanes, n
s
=7171, n

r
=31669

-10 -8 -6 -3
25%

50%

75%

100%

min= 0.51

1

1 1

1

1

1.1 1.
2

1.
3

1.
4

1.
5

1.
6

1.7

1.8

1.9
1.9

2

2

drop-off tolerance order

m
ax

 r
ow

 le
ng

th

LLNL MD, n
s
=2878, n

r
=8555

-10 -8 -6 -3
25%

50%

75%

100%

min= 0.97
0.86

0.
86

0.
88

0.
88

0.
90.

9

0.
920.

92

0.94
0.96

drop-off tolerance order

m
ax

 r
ow

 le
ng

th

LLNL PRF, n
s
=1034, n

r
=4236

-10 -8 -6 -3
25%

50%

75%

100%

min= 0.85

1

Figure 8: Influence of ILUT preconditioner settings on relative CPU time performance
of the preconditioned Krylov solver-enabled integration for different reaction mechanisms.
Contours represent normalized CPU times against CPU time using LSODES and direct
sparse solver. (x marks) actual measurement points, (lines) response surface contours
using kriging, (O marks) interpolated local minima.

up was much less relevant, but in some cases allowing complete rows,660

i.e., ffil = 1.0, was too expensive;661

• extreme drop-off tolerances of δ = 10−10 never yielded faster solutions,662

meaning that a more accurate and expensive LU decomposition was663

not compensated enough by the faster convergence rate of the Krylov664

solver.665

In Figure 9, cumulative integration metrics are reported for medium and large666

size mechanisms. Total number of time steps taken, ODE system function667

and Jacobian matrix evaluations, and linear system solutions are plotted as668
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a function of the drop-off tolerance value, δ, at the optimal fill-in parameter669

value ffil = 0.8, in comparison with the direct solver metrics. The plots show670

consistent behavior between the two mechanisms, despite the large difference671

in size and sparsity. Relevantly, the coarsest drop-off tolerance, δ = 10−3, was672

extremely unefficient in both CPU time performance and integration metrics,673

as the roughness of the ILUT decomposition requires the ODE integrator to674

take an extremely high number of integration steps to achieve the desired675

solution accuracy. Monotonic reduction of all integration metric parameters676

was seen as the accuracy of the LU decomposition improved. Interestingly,677

the LSODKR solver took a smaller number of timesteps to completion than678

LSODES. However, despite similar numbers of Jacobian matrix evaluations679

(both solvers share the same Jacobian reusage strategy), the overall number680

of function evaluations and linear system solutions was significantly higher681

with the Newton-Krylov iteration. In particular, the average number of682

Krylov subspace iterations per timestep (estimated equal to the number of683

calls to the linear system solution subroutine), was between 4.47 and 4.98 for684

the preconditioner tolerances smaller than 10−4.685

The reaction mechanism size did impact the main solution metrics, but it686

did affect the total CPU time. The small mechanism showed an optimal687

trade-off point at δ = 10−8, while the large mechanism reached a plateau in688

CPU time at δ ≤ 10−8. The knee when using the large reaction mechanism689

was smaller, but the CPU time using the optimal tolerance was still smaller690

than when using the smallest δ, by about 4.1%.691

4.2. Overall computational efficiency692

4.2.1. Ignition delay calculations693

The computational efficiency of the preconditioned BDF-Krylov solver694

LSODKR was compared to both LSODE, that uses direct methods and dense695

matrix algebra, with sparsely-evaluated analytical Jacobian converted into696

dense form, and LSODES, with the previously described configuration. Fig-697

ure 10 reports the average CPU time averaged over the 18 ignition delay cases698

versus reaction mechanism size. Interestingly, despite the fact that Krylov699

solver techniques have been historically developed for large-scale applica-700

tions, the performance of the Krylov solver was consistently more efficient701

than the dense solver also for small mechanism sizes, even if the Jacobian702

matrix was computed in sparse analytical form in that case too. The di-703

rect solver outperformed the Krylov solver for all mechanism sizes smaller704

than about one thousand with greater efficiency at the smallest mechanisms,705
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Figure 10: Average CPU times per integration over 18 ignition delay simulation cases,
using different linear system solution strategies and the fixed-coefficient LSODE BDF
method.

where the Krylov solver required up to about 34% more CPU time. The706

benefit of the preconditioned Krylov solver was observed only for the largest707

reaction mechanism size, with ns = 7171, where it outperformed the direct708

sparse solver by 45.4%.709

Integration metrics, plotted against reaction mechanism size in Figure 11,710

show that the structure, including the sparsity, does not affect the solver711

behavior in terms of the integration parameters; similarly, the differences712

in behavior observed between the Krylov and the direct sparse solver are713

seen throughout all the mechanism sizes. One only significant difference is714

seen when looking at the number of Jacobian evaluations taken by the direct715

solver for the largest mechanism, when its exact formulation is calculated to716

bring the Newton procedure in the implicit step down to convergence.717

718

A closer look at the BDF method is reported in Figure 12, where ignition of719

a stoichiometric PRF25 fuel-air mixture was simulated using the ERC mul-720

tiChem mechanism [42], at initial conditions p0 = 50bar, T0 = 800K, using721

the LSODE solver. This mechanism was the stiffest due to the extremely722

lumped reaction pathways for hydrocarbon classes up to C16 (cf. Figure 11).723

Here, the accuracy of all the solutions was not affected by how differently724
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Figure 11: Integration metrics for 18 ignition cases versus reaction mechanism size. (blue)
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the linear system solution was addressed internally within the implicit step725

iterations. However, slight differences are seen when looking at the time726

stepping, i.e., at how large time steps the ODE solvers took to compute the727

solution, as an effect of solution algorithm and round-off and truncation er-728

rors arising from the different procedures. 1) During low-temperature ignition729

(0.3ms < t < 0.6ms), the solvers (dense direct, sparse direct and Krylov iter-730

ative) show surprisingly similar timestepping, including spikes towards small731

time step values occurring when the solvers failed to converge due to severe732

stiffness. 2) during the no-heat-release, preparatory phase when chain initia-733

tions lead to generation of extremely small species mass fractions, the Krylov734

solver kept integrating with larger timesteps while both direct solvers had735

sudden time step reductions. This suggests that suppression of the smallest736

elements in the LU decomposition aids the solution convergence when many737

species have very small mass fraction values. 3) after ignition, when the reac-738

tions are near equilibrium and the system’s stiffness is at its maximum, again739

the Krylov solver outperformed both other solvers in terms of both taking740

larger time steps and of achieving smoother integration (fewer restarts).741

Finally, integration performance was studied in comparison with other stiff742

ODE solvers that adopt preconditioned Krylov subspace methods: VODPK743

[73] and DASKR [74], the Krylov enabled versions of VODE and DASSL,744

respectively. Simulations with the VODE and DASSL ODE solvers using745

direct linear system solution were run too, where the internal Jacobian com-746

munication and linear system solution algebra parts were replaced by using747

SpeedCHEM’s sparse matrix library. Figure 13 summarizes the computational748

performance when the optimal ILUT preconditioner parameters were used.749

All three solvers (LSODKR, VODPK, DASKR) show consistent, efficient be-750

havior and overall scaling of the order of O(ns) was achieved, both when using751

the direct sparse linear system solver, or the preconditioned Krylov method.752

LSODKR and VODPK in particular showed very similar trends, though753

VODPK was slightly more efficient for large reaction mechanisms. The im-754

plicit formulation in DASKR, that makes it suitable for differential-algebraic755

(DAE) systems, appeared less efficient when using internal Newton-Krylov756

iteration, but the version that used SpeedCHEM’s sparse matrix algebra im-757

plementation, DASSL, was the fastest solver in the group. The variable coef-758

ficient formulation in VODE made its behavior different than LSODE when759

switching from direct sparse algebra to the preconditioned Krylov method:760

the latter being consistently faster than the direct approach throughout most761

of the mechanisms tested. LSODE with sparse direct algebra was signif-762
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icantly faster than its Krylov version for all the reaction mechanism sizes763

ns ≤ 654.764

4.2.2. Internal Combustion Engine simulations765

As pointed out in a previous study [18], the computational efficiency766

of stiff ODE solvers is different when incorporating them within operator-767

splitting calculation frameworks, such as for the integration of chemical ki-768

netics in multidimensional combustion CFD simulations. The KIVA codes769

[50, 52, 53] model internal combustion engine flows with sprays and chemical770

reactions. The code makes use of operator-splitting for spray and chemistry771

terms. The chemistry evolves in every cell of the computational grid inde-772

pendently as in separate, constant-volume adiabatic reactors. The chemistry773

integration time requested for every cell is thus the fluid flow solver time-774

step, and due to accuracy constraints of the Arbitrary Lagrangian-Eulerian775

methodology, this can be as small as ∆t = 10−7 to 10−6s. This made coupling776

with the KIVA CFD code a challenging benchmark for the present ODE solu-777
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tion methods. In fact, typical integration time steps of stiff chemistry ODE778

solvers accidentally fall in this range, as shown in Figure 12. Thus, their779

overall computational performance when coupled to a CFD code relies not780

only in their capability to perform large time steps, but more importantly, in781

being able to perform very few Newton iterations within the same step, and782

achieving high order accuracy, as Jacobian matrix and solution reusage for783

large time-steps are scarcely possible. Techniques are available to reduce the784

computational burden by reducing the CFD domain size to a limited number785

of CFD cell ‘clusters’ or ‘zones’ [75] from which the solution can be mapped786

back to the individual cells based on a proximity criterion [17], but at the787

cost of introducing some error. However, as the aim of this study was to788

achieve a solution without approximations, high-dimensional cell clustering789

features were not used.790

791

In order to compare the computational performance of direct and Krylov792

subspace solvers for internal combustion engine simulations, closed-valve sim-793

ulations of a light duty optical research engine [76] were chosen. The sim-794

ulations model a partially premixed combustion strategy, operated through795

a single, early injection of PRF25 fuel, at a boosted, 55%EGR, 3barIMEP796

low-load operating condition. For computational efficiency, a 1/7th sector797

mesh with 18399 cells at bottom dead center was used. A customized ver-798

sion of the KIVA-3v code that incorporates the ERC models for spray injec-799

tion, atomization, multi-component evaporation, droplet collision and gas-800

phase interaction, as well as improved turbulence modelling was used. A801

full description of the code’s submodels and of the numerical setup is re-802

ported in [77]. Five different operating conditions were studied, including803

different swirl ratios Rs = [1.5, 2.2, 3.5], and different fuel injection pressure804

values, namely pinj = [500, 860, 1220] bar. Chemistry was solved using the805

SpeedCHEM library, and the relatively small, skeletal ERC PRF mechanism,806

which has ns = 47 and nr = 142 [40]. The maximum time-step allowed by807

the fluid flow solver was 3 × 10−6s. All the simulations were run in serial808

mode on one processor, on a computing cluster featuring AMD Opteron pro-809

cessors with 4 cores per CPU and a clock speed of 2700 MHz.810

811

The CPU time comparison of the simulations for the three solvers LSODE,812

VODE, DASSL in both Direct and preconditioned Krylov configurations is813

reported in Figure 14. Specific chemistry times are separated from the rest of814

the code operation, that includes the fluid flow and spray solution. Clearly,815
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Figure 14: Solver wall-time comparison for 5 KIVA engine case simulations.

both the VODE and the LSODE solvers showed similar overall performance816

when using the direct solver. Usage of the Krylov method in LSODE provided817

a significant speed-up of the solution (an average of −23%) . For VODE, the818

advantage of the direct solver seen for ignition simulations was not seen, but819

similar performance was observed between the two methods. The DASSL820

solver showed significant benefits in adopting the Krylov iteration method as821

LSODE, but its overall computational times were larger than for the other822

solvers. Noticeably, all solvers performed consistently across all cases, and823

no Krylov method failures were observed with the optimal preconditioner824

settings despite the wide variety of reactor conditions. Also, no noticeable825

differences could be observed in the predicted engine pressure and tempera-826

ture traces, as shown for example in Figure 15. The overall agreements of all827

the simulations were within a relative error of 0.63% for the pressure traces.828

In order to quantify the computational efficiency of the solvers during the829

simulation, a grid-index value was used. This index is defined as the average830

CPU time spent on every cell of the grid at every time step of the KIVA831

solver. Taking the simulation with Rs = 1.5 and pinj = 860bar as represen-832

tative, details of the grid index behavior during the simulations are reported833
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in Figure 16. Confirming the results of the ignition delay integrations, it is834

seen that the Krylov method is much more suitable for the integration of the835

low-temperature region than the direct solvers. Grid index values achieved836

by the Krylov solvers at crank angles smaller than about −30◦ATDC out-837

performed the corresponding direct solvers by up to more than three times.838

On the contrary, during high temperature ignition, the Krylov solvers were839

always outperformed by the direct solvers, except for LSODE, where both840

approaches had similar computational time requirements. Finally, later after841

ignition, when the mixture reaches near-equilibrium conditions, and strong,842

but almost equal, forward and backward reaction contributions compete, the843

Krylov subspace methods performed similarly, or faster, than the correspond-844

ing direct ones.845

846

In conclusion, the present engine simulation study confirmed the results ob-847

served for the ignition delay calculations. However, the integrators were848

forced to small time steps by the CFD solver and required repeated Ja-849

cobian evaluations/solutions due to the operator-splitting procedure. Tis850

enhances differences in performance among the solvers. In particular, the851

Krylov method significantly outperformed the direct solver in the region of852

the compression stroke where no fuel is present within the mixture, and the853

temperature is low, and again late after ignition, where the kinetics are near854

equilibrium. The direct solvers were instead consistently faster than their855

Krylov-enabled counterparts throughout the whole fuel injection and com-856

bustion duration. Amongst the solvers, both versions of LSODE showed the857

best performance.858

5. Concluding remarks859

The computational performance of direct and preconditioned iterative860

Krylov subspace solvers for the solution of the stiff ODE systems associ-861

ated with combustion chemical kinetics has been studied. The chemical862

kinetics of reactive gaseous mixtures was been modeled using the SpeedCHEM863

package, an efficient Fortran library for combustion chemistry that features864

sparse analytical formulations for the most important functions, optimal-865

degree interpolation of expensive thermodynamic properties, as well as a full866

library for internal sparse algebra that handles both matrix and vector com-867

putations and interfaces to stiff ODE solvers. The LSODES and LSODKR868

packages were compared, as they implement the same implicit BDF method869
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Figure 16: Grid index comparison for the Rs = 1.5, pinj = 860bar case, Direct vs. precon-
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and the same Jacobian re-usage strategy. Saad’s sparse incomplete LU fac-870

torization with dual truncation strategy (ILUT) was used as the problem871

preconditioner, in combination with the SPIGMR solver when the Krylov872

subspace solution technique was used. Other BDF solvers, such as DASSL873

and VODE, including their Krylov-enabled versions, DASKR and VODPK,874

were also compared to the LSODE solver. Comparisons were also made with875

the SpeedCHEM code coupled to the KIVA-ERC CFD code to perform internal876

combustion engine simulations of a light duty diesel engine operating with a877

partially premixed combustion strategy.878

879

The study showed that Krylov subspace methods, with a robust, general-880

purpose preconditioner, are extremely efficient for simulating combustion881

chemistry problems. The direct solver approach however provided greater882

computational efficiency for smaller reaction mechanisms that are of practical883

interest for multidimensional combustion simulations, where ns ≤ 103. In884

particular:885

• the sparse analytical Jacobian formulation made it possible to find a886

suitable preconditioner for the integration. The ILUT’s strategy that887

drops the least important elements in the decomposition is similar to888

removing interactions among species whose mutual links are weak. In889

this sense, the approach has the same effects as on-the-fly mechanism890

reduction approaches such as the DRG. The simplification is achieved891

without using expensive species relation techniques that would make892

the construction of the reduced Jacobian matrix much more demanding,893

since the graph links between the species, as well as its structure, would894

have to be re-calculated at every timestep;895

• optimal preconditioner settings of δ = 10−8 and ffil = 0.8 were found896

after an optimization study. These settings suggest that accurate fac-897

torization is needed. Despite this accuracy constraint, the final number898

of non-zeros can be as low as about half that of the complete factor-899

ization;900

• no solver failures due to bad convergence of the Krylov subspace method901

were observed when using the ILUT preconditioner;902

• integration metrics at the optimal preconditioner settings were close903

to the metrics of the direct solver method, confiming that the ILUT904
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is a robust, general-purpose preconditioner, and the optimal settings905

chosen were appropriate for this class of problems. A smaller number906

of integration time steps was needed for the Krylov solver;907

• the overall performance of the direct solver was consistently faster than908

the Krylov subspace solver for reaction mechanisms smaller than about909

1000 species;910

• the dimensions of the chemistry ODE system were evidently not large911

enough to fully exploit the potential of Krylov solvers;912

• when incorporated into multidimensional engine CFD simulations with913

a skeletal reaction mechanism, the Krylov method was faster than914

the direct method during the low-temperature, pre-ignition phase, and915

had similar performance after ignition, at near-equilibrium conditions.916

During ignition, the direct solvers always outperformed their Krylov-917

enabled versions;918

• a computational speed-up of nearly 25% on chemistry could be achieved919

by adopting the LSODKR solver in comparison with LSODES, that has920

already been shown to be the fastest among the direct solvers within921

CFD simulations. Greater speed-ups could be achieved by adopting a922

hybrid solution strategy where the most appropriate solver method is923

chosen based on the local mixture conditions.924

Finally, an important finding is that both methods achieve scaling of925

the computational cost of the solution from O(n3
s) down to about O(ns) for926

the very sparse combustion chemistry models that describe high molecular927

weight hydrocarbon fuels. This allows about two orders of magnitude CPU928

time savings for multi-dimensional CFD simulations, and up to three orders929

of magnitude savings for the largest hydrocarbon fuel oxidation mechanisms930

currently available in the literature. This also sets the path for further stud-931

ies. As the computational cost due to the solution of the linear system932

associated with the chemistry Jacobian is still the most computationally de-933

manding task, provided that advanced numerics are adopted to compute934

both the Jacobian and the r.h.s. of the system of equations (sparse algebra,935

analytical formulation, optimal-degree interpolation of expensive functions),936

it is possible that further improvements could be achieved by improving the937

analytical representation of the Jacobian’s LU factorization, or, when cou-938

pled with CFD codes, by removing the operator splitting simplification and939
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solve for both transport and chemistry using the same method. The issue of940

reaction mechanism size, that is large for dense algebra, but yet too small for941

extended parallelism, must be addressed to allow the integration of chemical942

kinetics problems on massively parallel architectures such as GPUs to be943

really efficient. Possibly an approach similar to CFD is needed, where every944

reactor is solved onto one single graphical unit, and shared memory provides945

a common pool for tabulated thermodynamic functions.946
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