IMPROVING SPRAY MODELS FOR ADVANCED COMBUSTION STRATEGIES

Federico Perini^a, Paul C. Miles^b, Rolf D. Reitz^a

^aUniversity of Wisconsin–Madison ^bSandia National Laboratories

IEA 36th Task Leaders Meeting 2014 "Energy Conservation and Emission Reduction in Combustion" Stavanger (Norway), June 9-13, 2014

Acknowledgements

D.O.E. Office of Vehicle Technologies, P.M. Gupreet Singh Sandia National Laboratories

1

Engine Research Center, University of Wisconsin – Madison IEA Combustion 2014 – Stavanger, Norway – June 9-13, 2014

0 5

Transition to large-scale computations

- Understand the 'locality effects' of flow, compositional and thermal non-uniformities on combustion

- Prepare the path towards comprehensive flow and transport modelling (LES, DNS) and future engine studies with full engine geometry

- First KIVA4 implementation (Torres, 2006) as the base code \checkmark
 - Need for a framework that is tailored to internal combustion engine simulations
 - Buggy but enabled support for unstructured geometries
- Large-scale combustion chemistry \checkmark
 - Sparse Analytical Jacobian chemistry solver ('SpeedCHEM')
 - High-Dimensional cell Clustering

2

- Extended and improved spray modelling
- Parallelization of the flow field and spray solution

PPC mixture preparation experiments

Experiments carried out at Sandia National Laboratories by P.C. Miles, D. Sahoo, S. Busch

- Optically-accessible Sandia-GM 1.9L engine
- Bosch CRI2.2 7-hole injector
- Variable swirl ratio intake: Rs = 1.5 to 4.5
- Fuel for mixture preparation studies: PRF25
- PLIF equivalence ratio measurements

PPC mixture preparation validation

PPC mixture preparation validation

PPC mixture preparation validation

Spray modelling improvement effort

Current spray model validation (unstructured code, sector mesh same to SAE2013-01-1105)

 \checkmark

Flow prediction validation (unstructured full engine model, generalized RNG k-ε closure) (CaF 2013, submitted; THIESEL 2014, submitted)

Spray model improvement and calibration (Sandia ECN spray experiments) Spray A

Injection-induced turbulence

Model study to capture near-SOI transient

7

Sandia Spray A modeling

900K, 60 bar, t_{ini} = 1.5 ms

- [contour] fuel vapor mass fraction, in the range [0, 0.05]
- [green dots] liquid phase distribution projection

Spray constants GA study

- Multiple interacting spray models \rightarrow hard to isolate the effects of each model
- Hard to validate each of these isolated phenomena against experiments
- May be aided by future DNS simulations

A GA optimization to answer these questions:

→ What **parameter regions** should we move in?

→ When we used to calibrate the spray constants, how much were we tweaking the gas-phase prediction too?

→ Is there an **optimal calibration set**, and, does this include "historically used" values or does it suggest new ones, which better fit the newest and highly confident Sandia experiments?

9

Spray constants GA study

6 model variables Variable std value name range to RT time constant 0.05 50.0 C_{RT} 1.0 RT wavelength cnst. 0.1 0.01 10.0 CART KH decay timescale cnst. B_1 40.0 10.0 100.0 Gas-jet Stokes number St 3.0 5.0 0.1 **K**_{entr} 0.7 (ideal=0.45) Gas-jet entrainment cnst. 0.3 3.0 Max gas-jet velocity frac. 0.6 0.2 0.9 V

5 Spray A objectives

Phenomenon merit 1) Vapor penetration integral mean squared error (MSE) 2) Vapor dispersion mean integral MSE (future addition) 3) Liquid ramp integral MSE 4) Steady liquid region mean peneration error 5) penetration stdev error 10

Spray A objectives

IEA Combustion 2014 – Stavanger, Norway – June 9-13, 2014

Spray A objectives

Results: breakup model constants

13

Results: breakup model constants

KH decay time scale constant (B_1)

14

- affects the liquid ramp phase (\rightarrow RT breakup not occurring yet), not the steady-state

- Vapor penetration: $B_1 > 50 \rightarrow$ we do not want breakup to compensate for turbulence!
- -Liquid ramp: $B_1 \in [35 44] \rightarrow$ converging to the widely validated $B_1 = 40$

RT model constants (wavelength $C_{\lambda RT}$, timescale C_{TRT})

- Crucial to liquid length prediction, which is "a tiny bit" after RT breakup happens
- the RT timescale seems to have optimal values $\sim C_{TRT} = 3.7$; or $2 < C_{TRT} < 4$

Results: gas-jet model constants

Very definite behavior for vapor penetration and liquid ramp $\gamma \in [0.7 - 0.9] \rightarrow$ Better to apply most of the effective gas-jet velocity Kentr $\in [0.6 - 0.9]$ for vapor penetration,

[0.8 – 1.5] for liquid ramp \rightarrow slightly higher than currently used

Stokes ϵ **[0.8 – 1.0]** \leftarrow Significantly smaller than the value St = 3.0 suggested in (Abani and Reitz, 2008) for steady gas-jet modelling \rightarrow Study of

Study of Stokes number effects

15

GA optimization summary

Confirms complex interactions among the models
Suggests that the Stokes number calibration used for steady gas-jet modelling is <u>overestimated</u> \rightarrow needs a deeper study
Confirms standard "historically used" and well validated values (e.g., B₁ = 40)

Currently setting up a more comprehensive optimization study:

- Large number of individuals and generations
- GRNG turbulence \rightarrow validated for vapor penetration
- Inclusion of jet dispersion merit as an objective

16

Gas-jet model Stokes number study

- A noticeably smaller range [0.8 1.0] suggested by the GA optimization
- The constant value can be replaced by a local estimation, exploiting injectioninduced turbulence effects at the nozzle

Gas-jet model Stokes number study

• Stokes calculation from RNG k-ε predicted integral length scale **at the nozzle**

Gas-jet model Stokes number study

- Constant Stokes, **St** = **3.0** (gas-jet model), **St** = **0.75** (as in the steady part)
- Variable Stokes, St = (computed at nozzle local cell)

19

Further research directions

Spray

Extend GA optimization and carry the improved calibration over to engine simulations

Fluid solution

- Parallelization for large-scale computations
- The KIVA lesson: a simple (Jacobi!) preconditioner can be very robust, and work very well (30+ years) if tailored to the problem (= coarse but topology-changing mesh)
- The most used ILUTP+BiCGStab solver "just works well" \rightarrow possible to improve preconditioning the physical relationship of the pressure-velocity coupling is exploited

Chemistry

- Chemistry solver now scales linearly with problem size (sparse analytical Jacobian)
- \blacksquare \rightarrow Need to move to scaling much less-than-linearly with the problem size
 - \rightarrow adjoint-sensitivity-aided partitioned (ASAP) clustering

Turbulence & Transport

- We are correctly modeling neither turbulent nor molecular transport
- Simple, linear isotropic turbulence models fail even over a simple gas jet case → but widely used for engines!
- Accurate transport modelling \rightarrow diffusion, viscosity, etc

20

Thanks! Questions?

Acknowledgements

D.O.E. Office of Vehicle Technologies, P.M. Gupreet Singh Sandia National Laboratories

21