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Summary - Motivation 

 Internal injector scales can differ from combustion engine scales by 2-
3 orders of magnitude 

 

 Realistic engine geometries require non-axial grids and the limited flow 
field resolution near the injector can affect spray simulations 

 

Long-term goal: Predictive multi-physics modeling of ICE flows, 
   sprays, and combustion  

Reduce the dependency of spray predictions on grid resolution through 
an improved sub-grid-scale representation of the spray jet flow field 

 

Improve the computational efficiency of the methodology to adopt 
more realistic numbers of particles 
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Efficient grid-independent collision modeling 
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prpVc rkd 

 Tetrahedralization of the drop-in-parcel representation for fast ROI calculation 

 Deterministic collision parameter estimation allows efficient pre-processing 
using data-mining techniques 
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parabola filtering

kd-tree and parabola filtering

full partner evaluation

Non-vaporizing, no-breakup 
simulation time  

 
reduced by 2 o.m.  

 
‘full blob’ case with  

21k parcels 
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Sub-grid scale modeling of transient gas-jet 

 A time-resolved sub-grid scale gas-jet 
model to cope with underresolved grid 
near the nozzle 
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Sub-grid scale modeling of transient gas-jet 

 Transient turbulent gas-jet velocity field of Abani and Reitz, PoF2007 
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Model parameters 
 
- St = Stokes number = spatial response time 
- Kentr = Entrainment constant = turbulent dispersion due to viscosity 
- fentr = how much of the momentum actually transfers to the gas phase 
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GA study of spray model constants 

• Multiple interacting spray models  hard to isolate the effects of each model 

• Hard to validate each of these isolated phenomena against experiments 
• May be aided by future DNS simulations 

A GA optimization to answer these questions: 
 

 What parameter regions should we move in? 
 

 When we used to calibrate the spray constants, how much 
were we tweaking the gas-phase prediction too?  

 

 Is there an optimal calibration set, and, does this 
include “historically used” values or does it suggest new ones, 
which better fit the newest and highly confident Sandia 
experiments? 
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GA study of spray model constants 

6 model variables 
 

Variable   name std value range to 
RT time constant  CRT 1.0 0.05 50.0 
RT wavelength cnst.  CΛRT 0.1 0.01 10.0 
KH decay timescale cnst.   B1 40.0 10.0 100.0 
Gas-jet Stokes number  St 3.0 0.1 5.0 
Gas-jet entrainment cnst.  Kentr  0.45 0.3 3.0 
Max gas-jet velocity frac.  γ 0.6 0.2 0.9 

 

5 Spray A objectives 
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Pareto visualization – colored by vapor penetration merit 
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Spray model constants 

Initial liquid ramp (f2) 
correlates well with 

vapor phase penetration (f1) 
 

 Importance of initial transient! 
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Liquid phase development 
 How correctly are we comparing measured and simulated liquid length? 

 Exp datasets: Dashed line = penetration (Pickett et al., SAE2011-01-0686); Movie: Manin et al., COMODIA 2012 

 How to distinguish between tiny droplets after catastrophic breakup and gas phase at the tip? 
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Mixture fraction distribution 
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 k-epsilon turbulence models suffer from jet over-dispersion (Pope, 1978) 

 GA has tuned spray parameters to compensate for this  good mixing downstream and far 
from axis 
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Mixture preparation in the SNL light-duty engine 
 Acknowledgements!  Paul C. Miles, Dipankar Sahoo, Kan Zha, Stephen Busch 
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Conclusions 
 Advanced spray models implemented and validated in structured geometries 

 

 Still room for improvement 
 Reduction of numeric constants in the gas-jet model  Extension of the gas-jet theory 

 Reduction of numeric constants in the atomization model  We range extension of the KH-RT model 

 

 

 

 

 

 

 The model seems to be fast enough for it 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

Now need to apply the validated models in more comprehensive 
modeling of local flow field and thermal quantities  

 full engine geometry and full (multiple) cycle simulations 
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see you at SAE… 

PFL140 Fluid flow Measurement & Analysis 

Wed Apr 22, 1:00 PM, Room 413 A   

Perini, F., Zha, K., Busch, S., Miles, P.C., and Reitz, R.D.,  

“Principal Component Analysis and Study of Port-Induced Swirl 
Structures in a Light-Duty Optical Diesel Engine”  

SAE paper 2015-01-1696 
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