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Summary - Motivation

B Internal injector scales can differ from combustion engine scales by 2-
3 orders of magnitude

B Realistic engine geometries require non-axial grids and the limited flow
field resolution near the injector can affect spray simulations

U

Reduce the dependency of spray predictions on grid resolution through
an improved sub-grid-scale representation of the spray jet flow field

Improve the computational efficiency of the methodology to adopt
more realistic numbers of particles

Long-term goal: Predictive multi-physics modeling of ICE flows,
sprays, and combustion
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Efficient grid-independent collision modeling

B Tetrahedralization of the drop-in-parcel representation for fast ROI calculation

B Deterministic collision parameter estimation allows efficient pre-processing
using data-mining techniques
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Sub-grid scale modeling of transient gas-jet

B A time-resolved sub-grid scale gas-jet ‘;iL‘Z'rfi;?'ve.
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Sub-grid scale modeling of transient gas-jet

B Transient turbulent gas-jet velocity field of Abani and Reitz, PoF2007
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Model parameters

- St = Stokes number = spatial response time
- K.t = Entrainment constant = turbulent dispersion due to viscosity
- iy = how much of the momentum actually transfers to the gas phase
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GA study of spray model constants

« Multiple interacting spray models - hard to isolate the effects of each model
 Hard to validate each of these isolated phenomena against experiments
« May be aided by future DNS simulations

l

A GA optimization to answer these questions:

- What parameter regions should we move in?

- When we used to calibrate the spray constants, how much
were we tweaking the gas-phase prediction too?

- Is there an optimal calibration set, and, does this
include “historically used” values or does it suggest new ones,
which better fit the newest and highly confident Sandia
experiments?
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GA study of spray model constants

6 model variables

Variable name std value range to

RT time constant Crr 1.0 0.05 50.0
RT wavelength cnst. Cart 0.1 0.01 10.0
KH decay timescale cnst. B 40.0 10.0 100.0
Gas-jet Stokes number St 3.0 0.1 5.0
Gas-jet entrainment cnst. Kentr 0.45 0.3 3.0
Max gas-jet velocity frac. Y 0.6 0.2 0.9

5 Spray A objectives

Spray A, €,,H, . 900K, 0,=0.0, t, =1.5ms Spray A, C,H, . 900K, 0,=0.0, t,_=1.5ms
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Pareto visualization — colored by vapor penetration merit
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m How correctly are we comparing measured and simulated liquid length?

Liquid phase development

=  Exp datasets: Dashed line = penetration (Pickett et al., SAE2011-01-0686); Movie: Manin et al., COMODIA 2012
=  How to distinguish between tiny droplets after catastrophic breakup and gas phase at the tip?
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Mixture fraction distribution

B k-epsilon turbulence models suffer from jet over-dispersion (Pope, 1978)
B GA has tuned spray parameters to compensate for this = good mixing downstream and far
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Mixture preparation in the SNL light-duty engine

m Acknowledgements! = Paul C. Miles, Dipankar Sahoo, Kan Zha, Stephen Busch

far from calibration injection pressure

Pinj = 500 bar Squish plane

experiment

simulation
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Mixture preparation in the SNL light-duty engine

m Acknowledgements! = Paul C. Miles, Dipankar Sahoo, Kan Zha, Stephen Busch

closer to calibration injection pressure

Pirj = 860 bar Squish plane

experiment

simulation
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Mixture preparation in the SNL light-duty engine

m Acknowledgements! = Paul C. Miles, Dipankar Sahoo, Kan Zha, Stephen Busch

closest to calibration injection pressure

Pinj = 1220 bar

Squish plane

experiment

simulation

CA=-15.0
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Conclusions

B Advanced spray models implemented and validated in structured geometries

m Still room for improvement
= Reduction of numeric constants in the gas-jet model & Extension of the gas-jet theory
= Reduction of numeric constants in the atomization model < We range extension of the KH-RT model

Now need to apply the validated models in more comprehensive
modeling of local flow field and thermal quantities
- full engine geometry and full (multiple) cycle simulations

B The model seems to be fast enough for it

Spray A, non reacting, t. .=1.5ms,t. =5.0ms
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