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Abstract

A novel approach for computationally efficient clustering of chemically re-
acting environments with similar reactive conditions is presented, and applied
to internal combustion engine simulations. The methodology relies on a high-
dimensional representation of the chemical state space, where the independent
variables (i.e. temperature and species mass fractions) are normalized over the
whole dataset space. An efficient bounding-box-constrained k-means algorithm
has been developed and used for obtaining optimal clustering of the dataset
points in the high-dimensional domain box with maximum computational accu-
racy, and with no need to iterate the algorithm in order to identify the desired
number of clusters. The procedure has been applied to diesel engine simula-
tions carried out with a custom version the KIVA4 code, provided with detailed
chemistry capability. Here, the cells of the computational grid are clustered
at each time step, in order to reduce the computational time needed by the
integration of the chemistry ODE system. After the integration, the changes in
species mass fractions of the clusters are redistributed to the cells accordingly.
The numerical results, tested over a variety of engine conditions featuring both
single- and multiple-pulse injection operation with fuel being injected at 50 de-
grees BTDC allowed significant computational time savings of the order of 3 to
4 times, showing the accuracy of the high-dimensional clustering approach in
catching the variety of reactive conditions within the combustion chamber.
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1. Introduction

The advancements in computational resources have allowed, in recent years,
combustion research to achieve quantitative predictive capabilities thanks to
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the adoption of chemical kinetics models in conjunction with multidimensional
simulations [1]; the study of the interactions of physical and chemical processes,
especially at the smallest scales [2], as well as the development of novel com-
bustion concepts, which are able to exploit the variety of reactive conditions a
fuel-oxidizer system can account for [3–6], is however urging the need for using
comprehensive, detailed reaction models [7], which can be made of thousands
species and more than ten thousands reactions [8–13]. In order to cope with such
mechanism dimensions, a number of approaches have been developed with the
aim of either achieving suitable computational time scaling with the mechanism
dimension, or of avoiding unnecessary computations. For example, a fast and
practical approach is to provide a reduced mechanism subset, by identifying the
active species as the ones among which strong reaction exchanges occur [14–18];
other approaches simplify the computational effort by dividing reactions into
fast and slow groups [19–22], or implement storage-retrieval techniques for re-
ducing the number of chemistry ODE system integrations by adopting suitable
approximations to high-dimensional functions [23–26]. Research is also active
in identifying proper ODE integration techniques computationally suitable for
stiff chemistry problems: as acknowledged [7], the dominating computational
cost when integrating large reaction mechanism is due to factorization of the
Jacobian matrix, if implicit or semi-implicit integration methods are adopted;
for this reason most approaches aim at either adopting matrix-free integration
methods or at reducing the Jacobian-related cost by either expressing it in a
sparse format, or by introducing simplified, approximate Jacobian formulations
[27–34].
The approach developed in the present work belongs to a number of studies
which aim at reducing the overall computational cost due to detailed chemistry
computations in multidimensional computational fluid dynamics (CFD) simu-
lations of practical combustion systems – such as internal combustion engines
–, by actually reducing the number of reacting environments the detailed chem-
istry ODE system needs to be integrated into. As Babajimopoulos et al. firstly
showed [35], significant computational time savings can be achieved when the
instantaneous chemical composition within a multidimensional domain fulfills
a pattern-like structure, for instance a fuel-oxidizer charge stratification, such
as that occurring in typical homogeneous-charge compression ignition (HCCI)
engine combustion. The multidimensional domain can thus be represented as
a multi-zone environment, where each zone owns defined temperature and mix-
ture equivalence ratio, so that only one detailed chemistry ODE system needs to
be solved per zone in each global advancement time-step, and then the results
of the integration can be backward remapped to the original cells, proportion-
ally to their initial compositions. This concept has been generalised by Liang
et al. [36], where the recognition of the homogeneous zones has been set up as
an evolutionary clustering problem, where the independent variables are cell’s
temperature and local mixture equivalence ratio. Barths et al. [37] applied
a similar approach as a two-way coupling between the actual CFD simulation
and a zero-dimensional multi-zone environment made up of a limited number
of homogeneous, chemically reacting zones. Shi et al. [38] have shown that
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significant computational time savings can be achieved also when the clustering
procedure is done according to a cell proximity criterion. Another approach has
been chosen by Goldin et al. [39], where the whole species and energy composi-
tion space has been adopted for describing each computational cell, and applied
to 1D and 2D laminar flame computations.
The main idea underlying the present work is that the robustness and the po-
tential of the partitioning approach mainly rely on the smartness of the cell
clustering algorithm, intended as its ability to:

• catch the variety of reactive conditions in the multidimensional domain,
that cannot be simplified into a unique parameter, and that are usually
ruled by species associated to fast timescales;

• automatically identify, at each timestep, the optimal number of clusters;

• minimize the inner inhomogeneity of the agglomerates by covering the
whole domain of compositions in a sparse way;

• do not introduce significant computational overhead and thus be suitable
for large-scale parallel computations.

The paper thus describes the study of a complete, unsupervised high-dimensional
clustering approach, validated and applied for internal combustion engine sim-
ulations with detailed chemistry; its presentation is structured as follows. In
section 2, all the aspects of the approach developed for chemistry-based cell
clustering are presented: first of all, the clustering problem is defined by intro-
ducing the dataset representation, the relationships between chemically-reacting
CFD cells and their images in the clustering space, and suitable distance met-
rics; then, an unsupervised initialisation procedure is reported, which sets the
initial cluster partition up as a grid-like structure. A full description and valida-
tion of a novel crisp clustering algorithm of the k-means class is then presented;
the algorithm, named ‘bounding-box-constrained’ (BBC) k-means, is tailored
for clustering chemistry-based datasets which typically model thermodynamic
systems, whose behaviour is strongly nonlinear with respect to the variables’
values. Finally, in section 3 the implementation of the proposed procedure into
a customized version of the KIVA-4 code [40], provided with detailed chemistry
capability, is presented and discussed focusing on the accuracy and on the com-
putational time savings allowed by adoption of this procedure with respect to
a standard solution where a chemistry ODE system is integrated in each cell
of the domain. The analysis shows that the procedure proved to be robust
on a variety of diesel engine cases involving different combustion modes, and
that overall speed-ups of at least three times have been achieved for all the
tested cases, with almost negligible overhead introduced by the clustering and
remapping procedure.
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2. Unsupervised high-dimensional clustering (UHDC)

As acknowledged [36, 39], the issue of reducing the overall computational
demands due to solving chemical kinetics in multidimensional simulations can
be addressed as a three-step procedure: (1) optimal clustering of the chemically
reactive cell in the computational domain into a number of chemically homoge-
neous environments; (2) solution of the chemistry ODE system in each cluster,
yielding internal energy and species mass fractions source terms at the cluster
level; (3) mass-conservating redistribution of the cluster-level time-integrated
quantities to the each single cell.
As far as the clustering problem is concerned, two main approaches are possible:
crisp clustering algorithms such as the k-means [41] consider cluster centers as
the average values among their own points; this approach is particularly suit-
able for grouping CFD domain cells on a chemistry basis thanks to its limited
computational demands, where the most time-consuming task is that required
by evaluation of point-to-center distances; its intrinsic averaging however tends
to deteriorate the diversity of the initial integration conditions of the cells, and
needs to be restored by a specific backward remapping procedures. On the
other hand, in fuzzy clustering algorithms such as the common fuzzy c-means
[42] each point belongs to each cluster center to a certain degree of membership;
thus, cluster centers usually follow a more disperse distribution in the domain,
and every single point can be viewed as the weighted average of all the clus-
ter centers. From the chemical kinetics point of view, this latest aspect could
be beneficial, as each cell in the computational grid may be represented as the
weighted average of a smaller number of sparse and far-away-from-each-other re-
active conditions. However, the strong non-linearity and anisotropic behaviour
of chemical kinetics in combustion systems make this approach less suitable: the
membership exponent approach used to quantify membership values to cluster
centers would also require that species mass fraction ranges would be properly
scaled so that each problem variable would have the same degree of importance
in contributing to the membership function. Furthermore, fuzzy clustering al-
gorithms typically require significantly higher computational efforts, that would
render their adoption useful only in presence of huge computational domains.

2.1. High-dimensional clustering problem formulation

The chemical kinetics initial value problems treated in this work are used
in order to compute species mass fractions and internal energy source terms
as part of the operator-splitting context adopted in the KIVA family of codes
[40, 43]. The dimensions of the chemistry integration problem are given by the
number of the independent variables: neq = ns + 1, ns being the number of
gas-phase species, plus the cell’s internal energy term. The variety of combus-
tion conditions typically occurring in a multidimensional domain suggests the
need to consider an enough representative subset of these variables, in order to
have each cell cluster represent a definite combustion regime. This approach
has for example been adopted by Goldin et al. [39] and tested in laminar flame
calculations. Other approaches, such as the one by Liang et al. [36], introduce
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representative scalars of the combustion conditions such as the mixture’s global
equivalence ratio; in this paper we adopt a high-dimensional cluster representa-
tion for two reasons: (1) to preserve maximum computational accuracy at the
broadest variety of combustion regimes, eventually sacrifying some amount of re-
duction in computational demands; (2) as acknowledged [44], high-dimensional
clusters are usually sparse, and it is of absolute importance for computational
combustion simulations to preserve the correct spatial stratification in mixture
compositions.
Hence, we first of all define the chemistry state space representation for each
cell j in the computational domain:

yj = [Tj , Y1,j , Y2,j , . . . , Yns,j ]
T
, (1)

being made up by cell temperature T [K] and gas-phase species mass fractions,
Yi, i = 1, . . . , ns. The clustering problem formulation thus features a number of
tuples (points) equal to the number of active cells in the domain, with each point
corresponding to the subset representation of the j-th cell’s chemical state:

xj = [x1,j , x2,j , . . . , xd,j ]
T
, j = 1, . . . , p, (2)

where d is the total number of dimensions in the high-dimensional representa-
tion. The elements in the array xj model the cell’s temperature and the species
mass fractions of the subset S of selected species for clustering:

x1,j = Tj , (3)

x2:d,j = Yk,j ,∀k ∈ S.

The clustering problem requires that the set of points xj , j = 1, . . . , p is
partitioned into an optimal number k of (chemically-)homogeneous clusters.
Each cluster center, according to the crisp clustering choice, is a point itself
in the reduced d-dimensional space, whose components are the mathematical
averages of the points values that belong to that partition:

ci = [c1,i, c2,i, . . . , cd,i]
T

=
1

ni

ni∑
j=1

xj , i = 1, . . . , k. (4)

This property is particularly useful, and can be applied especially when return-
ing to the high-dimensional chemical state space representation, where each
cluster center can be fully modeled as the physical average of its owned cells;
each i-th cluster center, containing ni computational cells, thus owns proper
mass m, pressure p, temperature T , density ρ, internal energy U and gas-phase
composition:
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mi =

ni∑
c=1

mc; (5)

Vi =

ni∑
c=1

Vc;

Yj,i =

∑ni

c=1mc Yj,c
mi

, j = 1, . . . , ns;

Ti =

∑ni

c=1mc cv,c Tc∑ni

c=1mc cv,c
;

pi = ρiRTi

ns∑
j=1

Yj,i
Wj

;

(6)

where R represents the universal gas constant in molar units, Wj , j = 1, . . . , ns
the species molar weights, and cv,c = ∂Uc/∂T the constant volume specific heat
value.

The hereby defined clustering problem adopts physical properties of the cells-
points as independent problem variables; their direct adoption is however of
difficult implementation: as a matter of fact, clustering algorithms rely on arbi-
trary distance metrics in order to evaluate the modeled distance between points,
and every problem dimension is treated consistently by distance metrics by defi-
nition. For this reason, the adoption of variables that have different scales is not
feasible for practical clustering problems in combustion: for instance, distances
between mass fractions, which vary in the interval Y ∈ [0, 1], would always be
neutralized by temperature distances, where, at a certain time in a typical mul-
tidimensional domain, the temperature range can be wider than 1000K.

For this reason, in this approach a normalization function has been imple-
mented for each variable range, so that during the clustering problem, each vari-
able is bound in the [0, 1] range, and the whole cloud of points xj , j = 1, . . . , p
is transferred into a unity d-dimensional hyperbox. In particular, each point in
the domain is assigned to a corresponding image ξj in the unity hyperbox, and
the shape function that pursues the variables’ normalization is expressed as:

ξj,i =
xj,i −mini (xj,i)

maxi (xj,i)−mini (xj,i)
; i = 1, . . . , p; j = 1, . . . , d; (7)

here, computation of the inverse function is not needed because of the bijective
relationship between points in the physical space and their images in the nor-
malized hyperbox, so that cluster centers in the physical space can be directly
built by averaging of the physical points values. Figure 1 presents a schematic
view of the normalization process, in the simple case where only two dimensions
are considered.
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Figure 1: Two-dimensional representation of the variable normalization process into a d-
dimensional unity hyperbox.

Distance metrics constitute the last parameter for completing the clustering
problem definition, and also its choice is of absolute importance onto the effec-
tiveness of the clustering algorithm. In this work, the general distance metric
in Minkowski’s form has been considered for the implementation:

d (xp,xq) =

 d∑
j=1

|xj,p − xj,q|α
1/α

, (8)

with α a real positive exponent. All of the possible metrics expressed by this
formula suite the distance metrix axioms, including symmetry, identity, and tri-
angle inequality; this formulation also reduces to the Euclidean distance metrics
in case α = 2. Some recent clustering-related literature points out that distances
with high exponent value, e.g. α ≥ 2, are less suitable in crisp, high-dimensional
clustering algorithms, and that values of the exponent in the range 0.1 < α ≤ 1
are recommended. In [45], for example, it has been proven that low-exponent
distance metrics, such as the Manhattan or ‘taxicab’ distance at α = 1, or
metrics with an even lower value of α, better identify cluster proximity along
the same direction, and this feature is particularly useful for high-dimensional
clusters where data are usually very sparse. Even if distance metrics with expo-
nent values lower than unity have shown the best performances in clustering, in
this work the α = 1 Manhattan metrics have been adopted, as their evaluation
requires the lowest computational demand in comparison with any other of the
Minkowski distance metrics, which would require two real number powers per
distance value.

2.2. Grid-like usupervised optimal cluster initialisation

In order to cope with one of the major problems of data clustering, i.e. the
choice of the optimal number of clusters, k, a novel and tailored approach is
here introduced, that is devoted to both providing a robust initialisation to the
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cluster centers for the iterative clustering algorithm, and to implicitly defining
the optimal number of clusters for the current partition. In this way we elimi-
nate the outer iteration loop which characterizes typical unsupervised optimal
clustering procedures, where the clustering algorithm is repeated at increasing
number of partition clusters, and that is stopped after that the desired partition
quality has been reached. This on one side provides significant computational
time savings for the clustering process, and on the other hand it guarantees that
the cluster centers in the partition do not collapse one onto each other. This
latest feature is shown in the following paragraph.

We first of all define a clustering dimensional sparsity value in the unity hy-
perbox, εj ∈ (0, 1] , j = 1, . . . , d that estimates the desired maximum extension
of a cluster’s distribution of images along each dimension, and that is directly
linked to its dimensional counterpart in the points space, Ej , j = 1, . . . , d. This
quantity is used to define a dimensional span, i.e. an estimated number of
equally-spaced grid-like subdivisions along each dimension:

sj = 2 + int
(
ε−1
j

)
, j = 1, . . . , d, (9)

where the int function pursues rounding to integer towards zero. Using the
span value of each dimension, a d-dimensional grid is built, which discretizes
the unity hyperbox [0, 1]

d
where the normalized point images lay. Each vertex

in the grid represents a potential cluster center initialisation: as a matter of
fact, only the vertices of the active cells, which contain at least one point image,
can become cluster centers; this idea is the seed for the bounding-box clustering
procedure described in the following. Figure 2 represents an example of the
grid-like cluster centers initialisation in a two-dimensional space.

It is worth to point out that this initialisation procedure yields an optimal
number of cluster centers at the desired clustering accuracy, and a well-spaced
cluster center initialisation, that can speed up the clustering algorithm conver-
gence. The only input needed by the user is the choice of the desired maximum
cluster sparsity values Ej , that can be made on the knowledge of the physical
model on which clustering is applied; in the case of combustion chemistry, only
two distinct values, one for temperature and one for species mass fractions are
needed. Their detailed analysis is anyway discussed in the Results section.

Some other important properties of the grid-like cluster center initialisation,
which will be recalled in the following, are:

• Each (active or inactive) cluster center is assigned a unique index value,
defined as follows:

ni =

d∑
j=1

(
j−1∏
k=1

sk

)
· int

(
ξj,i
εj

)
, i = 1, . . . , k; (10)

• Each point image is surrounded by a ‘bounding box’ whose vertexes are
all active cluster centers at the initialisation;
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Figure 2: Cluster initialisation in two dimensions for a sample points set (blue dots); Dimen-
sional span s1 = 10, s2 = 7. Potential number of cluster centers: 70; initialised cluster centers
(red diamonds): k = 54.

• The number of bounding cluster centers b to each point image only depends
on the grid dimensionality:

b = 2d; (11)

• Each active bounding box contains at least one point image;

• The final number of clusters after completion of the clustering algorithm
can be lower than the number of initialised centers, as some of them may
result to be be empty.

2.3. Bounding-box-constrained k-means

The two major computational inefficiencies related to crisp clustering algo-
rithms, such as the k-means, in high-dimensional spaces, are the need to per-
form, at each iteration, all the possible point-to-cluster distance evaluations, of
the order O(kp), and the computational effort of the distance evaluation itself,
that is of the order of the points dimensionality, O(d). There have been efforts
in the literature targeting to the reduction of the number of point-to-cluster
evaluations [46, 47]; these approaches basically exploit distance metrics proper-
ties such as the triangle inequality to limit the number of distance evaluations
from each point, only to the restricted set of clusters that are near enough to
it; these approaches however require additional memory, whose storage and re-
trieval can be computationally less efficient than the standard full approach at
low- and mid-size problem dimensions, e.g. d ≤ 15, due to scattered access to
memory areas.
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Starting from the grid-like cluster center initialisation idea, a bounding-box
constrained variant to the k-means algorithm is thus proposed, that has been
tailored for the clustering problem in multidimensional simulations with detailed
chemistry solution, but that is of general usage, and can profitably be tested also
for different clustering problems. In particular, the algorithm exploits the idea
that, if the cluster centers have been uniformly initialised across the zones of the
space unity hyperbox that are covered with point images, each of them will lay
in the surroundings of its initialisation value even after the end of the iterative
clustering process. The core feature that makes the developed ‘bounding-box-
constrained’ procedure differ from the standard k-means algorithm is thus that
each image can be assigned to its surrounding cluster centers only, i.e. those
which define the image’s grid-like bounding box vertexes at the initialisation.
Seen from the cluster center perspective, this assumption means that not all the
images can belong to each center, but only those which lay in the grid boxes
surrounding the cluster center at the initialisation.

The modified, bounding-box-constrained k-means algorithm developed is ex-
ecuted according to the main steps summarized in Algorithm 1; further opti-
mization issues have been addressed in the Fortran implementation concerning
the code’s execution and the need to manage formation of empty clusters, but
they are beyond the scope of the present paper. The main computational ad-
vantage allowed by the current algorithm is its reduced computational need,
which is of the order O(2dp), where the number of bounding cluster centers per
point, 2d, is significantly lower than the overall number of active clusters k in
practical computations.

In order to stress the validity of the developed algorithm, its performance
upon a standard, two-dimensional test case retrieved from [48] is presented. In
particular, the testcase adopted consists of 5,000 two-dimensional points be-
longing to 15 Gaussian clusters scattered at a medium degree of overlapping,
and two different initialisation scenarios have been considered: a first grid-like
initialisation made up of 20 total cluster centers, with spans s1 = 5 and s2 = 4;
and a second one made up of 100 total cluster centers, where s1 = s2 = 10. The
implementation of Algorithm 1 has been compared with a reference k-means
implementation, and the same required number of clusters; the results are re-
ported in Figure 3 and 4. More in detail, the first example, which considers a
desired number of clusters of the same order of the real cluster layout, shows
that pretty different partitions are obtained using the two algorithms: the stan-
dard k-means yields a higher number of cluster centers in the central region of
the domain, while in the external region it happens that two clearly distinct
clusters are assigned to a unique cluster in the partition. On the other hand,
the clustered partition obtained through the bouding-box-constrained (BBC)
k-means shows a slightly more even distribution, thanks to the fact that the
cluster centers positions are constrained to remain approximately in the same
region as the one they were initialised into. As a possible drawback of this
procedure, the limited mobility of the cluster centers to their surrounding zone
has created a split cluster in the lower right part of the domain. The overall
algorithm performance appears however to guarantee a much more balanced
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Algorithm 1 Bounding-box-constrained k-means

Require: cj , j = 1, . . . , k {initialised cluster centers}
Require: cluster(ip) ip = 1, . . . , p {partition at initialisation}
{cluster(ip) = cluster index to which point ip belongs}
{Carry on main k-means iteration}
it← 0
repeat
it← it+ 1 {Iteration counter}
swap← 0 {Points changing cluster at current iteration}
for ip = 1 to p do
ci← cluster(ip)
{nci = cluster population of cluster ci}
if nci > 1 then
for ib = 1 to b do
{bbox(i, j) = indexes of bounding cluster centers to point j; i =
1, . . . , b}
cj ← bbox(ib, ip)
if cj = ci then
dist(ib, ip)← ncj

ncj−1 d(xip, ccj)

else
dist(ib, ip)← ncj

ncj+1 d(xip, ccj)

end if
end for
cj ← bbox(arg min (dist(:, ip)), ip)
{swap point between centers ci and cj}
{and update cluster centers}
if ci 6= cj then
cci ← nci

nci−1cci −
1

nci−1xip
ccj ← ncj

ncj+1ccj −
1

ncj+1xip
nci ← nci − 1
ncj ← ncj + 1
swap← swap+ 1
cluster(ip)← cj

end if
end if

end for
until swap = 0 or it = itmax
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Figure 3: Comparison between standard and bounding-box-constrained (BBC) k-means at
k = 20. Cluster centers: black dots; points: various symbols. Dataset from [48].

Figure 4: Comparison between standard and bounding-box-constrained (BBC) k-means at
k = 100. Cluster centers: black dots; points: various symbols. Dataset from [48].

cluster distribution. This latest aspect is of particular importance in clustering
chemically reacting cells in CFD, where the average cluster dimension can be as
low as 3-4 cells (i.e., a 3 to 4 times reduction in the number of chemistry ODE
systems to be integrated at each timestep), and where the strongly non-linear
behaviour of the reaction mechanism requires maximum cluster homogeneity.
Figure 4 points out a consistent behaviour of the two algorithms with respect to
the previous observations; in this case, where the desired number of clusters is
much higher than the optimum value, it can be observed that the BBC k-means
subdivides the 15 real cluster regions into 4 to 7 clusters each; the standard
k-means algorithm, instead, although catching correctly all of the real clusters,
shows a deep concentration of cluster centers in the central region of the domain,
thus leading to a pretty unbalanced allocation of the cluster partitions.
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2.4. Cluster data remapping

The last stage of the procedure is remapping of the integrated variations in
species mass fractions at the cluster level, back to the original fluid cells. As
pointed out in the contributions by Babajimopoulos et al. [35], and by Liang et
al. [36], a simple, weighted remapping of the species mass fractions changes from
each cluster to its owned cells would gradually deteriorate the solution, through
species mixing. The backward remapping procedure by Liang et al. [36] has
thus been adopted, which has been shown to well suit crisp, chemistry-based
cell clustering in multidimensional domains, and that complies with needs for
species non-negativity and mass conservation.
Considered the species mass fraction variation at the cluster level, due to the
integration of the chemistry ODE system for the time interval ∆t, we have, for
cluster c:

∆Yj,c = Yj,c(t+ ∆t)− Yj,c(t), j = 1, . . . , ns; (12)

then, for each cell i belonging to that cluster, the variation in species densities
ρj,i at the cell level after the integration of the chemistry ODE system at the
cluster level is computed as:

ρj,i (t+ ∆t) = ρj,i (t) +

{
∆Yj,c ρi, if ∆Yj,c ≥ 0;

∆Yj,c ρc ρj,i/ρj,c, if ∆Yj,c < 0.
j = 1, . . . , ns

(13)
Finally, the cells’ specific internal energies can instead be updated directly on
the basis of the updated species mass fractions, exploiting the species’ heats of
formation values h0j , j = 1, . . . , ns:

Ui (t+ ∆t) = Ui (t) +

ns∑
j=1

h0j [Yj (t+ ∆t)− Yj (t)]. (14)

3. Results

3.1. Validation of the computational model

A modified version of the KIVA-4 code [40] has been used for this study.
In particular, species thermodynamic properties for the fluid flow and detailed
fuel combustion kinetics are modelled through a vectorized chemistry code pre-
sented in [49], and recently updated in order to provide fast simulation capabil-
ities for large reaction mechanisms [34]. The code considers detailed gas-phase
thermochemistry including reactions in Arrhenius form, third-body reactions
with enhanced molecularities and pressure-dependent fall-off reactions in Lin-
demann’s and Troe’s forms. As far as fuel spray is concerned, the physical and
thermal properties of diesel #2 in the KIVA database are used to model diesel
fuel, while a dynamic model adopting the empirical correlation by Reitz and
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Engine FIAT Multijet 1.3L
Engine type high-speed direct injection diesel
Valves per cylinder 4
Bore × stroke [mm] 69.6 × 82.0
Connecting rod length [mm] 131.3
Squish height [mm] 0.59
Compression Ratio 17.6:1
Cylinder displacement [l] 0.624
Intake valve closure 147 ◦BTDC
Exhaust valve opening 112 ◦ATDC

Table 1: Engine specifications for FIAT 1.3l high speed, direct injection engine.

Bracco [50], as applied in [51] for high pressure diesel sprays, has been imple-
mented to model the effects of instantaneous operating conditions and injector
nozzle geometry on the initial spray angle. The skeletal reaction mechanism
for n-heptane fuel chemistry, made of 29 species and 56 reactions [52], and de-
veloped for multidimensional homogeneous-charge compression ignition engine
simulations has been chosen, as the relative computational savings allowed by
the proposed method are mechanism-independent. The baseline computational
model solves the system of ordinary differential equations for combustion chem-
istry in each cell of the computational grid, where the local temperature value
is greater than 600K; the global timestep advancement is ruled by the KIVA-4
stability and convergence constraints [40], where the chemistry limiting value
is ruled by the maximum mass-specific increase in the cell’s internal energy.
An overall maximum timestep ∆tmax = 1.0e − 05s has been set; the choice of
such a pretty high value has been made in order to avoid the performance of
the clustering algorithm from being altered, by artificially increasing the total
number of simulation timesteps where chemistry has to be solved.

A high speed, direct injected diesel engine of current production has been
modelled, whose specifications are reported in Table 1, featuring a common-
rail injection system operating at 1600bar maximum pressure and capable of
multiple injections (cfr. Table 2). Table 3 reports instead the details of the
three engine operating conditions considered, which involve different combus-
tion behaviours: at high engine speed and maximum load, featuring a unique
injection pulse, down to maximum torque engine speed and full load, featuring
three injection pulses starting from 50 crank angle degrees before TDC. Finally,
the engine geometry has been modelled as a 60-degrees sector mesh, made of
24780 cells at BDC, as represented in Figure 5. The grid has an average spa-
tial resolution of about 1.1mm, and includes modelling of the crevice volume
between piston and cylinder liner; the KIVA grid movement routine has been
modified in order to guarantee a minimum of three cell layers at the walls, for
better fitting of the thermal and velocity boundary layers.

14



Injection system common-rail
Injector type electronically controlled
Max. Injection pressure [MPa] 160
Number of nozzle holes 6
Nozzle hole diameter [mm] 0.121
Injection angle 15◦

Table 2: Fuel injection system specifications.

Case 1 Case 2 Case 3
Rotating speed [rpm] 1500 3000 4000
Number of injection pulses 3 2 1
start of main injection [◦BTDC] 0.5 7.0 21.5
start of pre- injection [◦BTDC] 50.0 – –
start of pilot injection [◦BTDC] 5.0 21.8 –
injected fuel mass [mg] 37.1 36.4 35.1
injection pressure [MPa] 800 1200 1600

Table 3: Engine validated operating parameters.

Validation of the engine model is presented in Figures 6, 7 and 8 in com-
parison with experimental data, in terms of average in-cylinder pressure and
temperature traces [53], and where instantaneous apparent heat release rates
have been reconstructed using Rassweiler and Withrow’s method [54]. The
plots show a very good agreement of the predicted traces with the experimen-
tal measurements, and in particular the detailed chemistry capability proves to
yield correct predictions of the low temperature combustion region due to the
early injection stage in case 1, and of the premixed combustion heat release
peak in case 2, at maximum engine speed, as well as ignition delay timings in
both validation cases.

3.2. Clustering procedure validation and setup

As mentioned in the previous paragraphs, the bounding-box-constrained al-
gorithm developed for chemistry clustering proceeds unsupervised, by automati-
cally determining the optimal number of clusters, and the initial cluster partition
on the basis of a grid-like subdivision of the normalized images domain. The
only parameters that rule over the process, and that need to be set prior to ex-
ecuting the algorithm, are the desired sparsity values Ej , j = 1, . . . , d which are
needed to define the overall span over each dimension, as in Equation 9; and the
choice of the subset S containing the selected species for clustering. Since the
independent variables in the chemistry clustering problem are represented by
the reactor temperature and species mass fractions of Eq. 3, only two sparsity
constraints can however be defined, namely ET and EY ; as far as the species
subset is concerned, in the following analysis a subset made of 9 species has been
considered as a reference, as reported in Table 4. In particular, the species that
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Figure 5: 60-degree sector computational grid for the 1.3l engine at top dead centre.

Subset Species
S9 C7H16, O2, OH,O,HO2, N2, CO,CO2, H2O
S7 C7H16, O2, OH,HO2, CO,CO2, H2O
S5 C7H16, O2, HO2, CO2, H2O
S4 C7H16, O2, CO2, H2O

Table 4: Species subsets chosen for the clustering algorithm performance analysis.

rule over combustion timing and heat release have been chosen for the reference
subset S9, and some more reduced sets have been derived from that by remov-
ing the species which typically show smaller concentrations during combustion.
Fuel, oxidizer and main combustion products are instead always present.
Finally, in Table 5 some problem-independent parameters have been reported,
which prevent the algorithm from exceeding reasonable memory requirements,
or by stalling in infinite loops – for example, in order to avoid that one last
image steps back and forth between two adjacent cluster centers, the algorithm
is stopped after a maximum number of iterations or if the number of swapping
images is lower than a specified threshold, measured as the ratio between the
swapped images at the last iteration and the total number of active images.

Parameter Value
Max number of iterations 50
Minimum mass fraction for species activation 1.0e-03
Maximum span along species dims. 8
Maximum span along Temperature dim. 500
Minimum clusters-to-cells ratio 1.0e-03

Table 5: Problem-independent parameters ruling over the bounding-box-constrained algo-
rithm runtime.

16



0

20

40

60

80

100

120

140

160
1500rpm, full load

pr
es

su
re

 (
ba

r)
 −

 te
m

pe
ra

tu
re

 (
°C

/1
5)

0

20

40

60

80

100

120

140

160

R
at

e 
of

 H
ea

t R
el

ea
se

 (
J/

C
A

)

 

 

experiment

KIVA4 − chemistry

−80 −60 −40 −20 0 20 40 60 80

m
in

j

CA degrees ATDC

Figure 6: Model validation for KIVA4-chemistry code with ERC reaction mechanism [52],
operating case 1.

3.2.1. Performance of the BBC k-means algorithm

As a first point which shows the performance of the proposed clustering pro-
cedure, Figures 9, 10 and 11 compare the performances of the BBC k-means
algorithm with the standard k-means implementation, for a reference clustering
setup which considers subset S5, and where εT fits a temperature sparsity of
ET = 20K and εY a species sparsity equal to EY = 0.005. In each of the three
cases, both clustering methods have shown an excellent agreement in term of
predicted average in-cylinder properties in comparison with the baseline case
which performs full chemistry computation; the most significant point with re-
spect to the overall CPU times is that the BBC k-means introduced almost
negligible computational overhead in comparison to standard k-means, where
instead the CPU time needed for clustering significantly exceeds that needed by
the integration of the chemistry ODE systems of the CFD cells. This leads to
the observation that the standard k-means approach appears to be unsuitable
for high-dimensional clustering in CFD. Also, the CPU time due to chemistry
when adopting the standard k-means is higher compared to the BBC k-means
approach, due to the possibility of the cluster centers to freely redistribute across
the image domain. The bounding-box approach instead constrains the cluster
centers to their original initialisation region, and the clusters initialised at the
borders of the images ‘cloud’ of Figure 2 are more likely to remain empty.

A more accurate look at the local, in-cylinder distribution of scalars has been
reported in Figure 12, where the local values of temperature and mass fractions
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Figure 7: Model validation for KIVA4-chemistry code with ERC reaction mechanism [52],
operating case 2.

of fuel, CO2 and HO2 are plotted for case 1 at a vertical cross-section plane
intersecting the injection axis. The shots have been taken at CA = 8.0 degrees
after TDC, at the peak of heat release and average cycle in-cylinder pressure,
and compare the full chemistry solution with that deriving from the BBC k-
means algorithm of Figure 9. A generally very good agreement between the
predicted local values of the computation with cell clustering is observed for all
the quantities, ant it appears to be independent on the combustion chamber
zones, including the squish region and the piston bowl walls where massive wall
impingement occurs, as well as on the possible presence of liquid fuel as in the
inner spray jet core. The trend that shows good local agreement between the
full-chemistry and the clustered solutions is also confirmed by predicted NOx
emissions in Figure 13. Here, the NOx formation sub-mechanism was modeled
by 5 species and 12 reactions, extracted from GRI-mech 3.0 [55]; none of the
NOx species was included in the clustering algorithm’s species subset. The re-
sults confirm that the very good match of the clustered simulation versus full
chemistry is present on a local basis, not only in terms of main thermodynamic
properties, but also for individual species concentrations.

Finally, Figure 14 shows the detailed computational time requirements of the
BBC k-means algorithm steps in the validation case 1. From the plot, it’s clear
that the most demanding tasks of the clustering procedure are the execution of
the BBC k-means and the integration of the clusters’ chemistry ODE systems;
the cell grouping and integration remapping phases appear to be always less
demanding than any other phase by almost two orders of magnitude. The plot
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Figure 8: Model validation for KIVA4-chemistry code with ERC reaction mechanism [52],
operating case 3.

also points out that, approximately from top dead center, and almost until 20
degrees ATDC, i.e. at the peak of global heat release, higher temperature and
species stratification within the cylinder leads to a higher number of clusters.
Here, chemistry takes more than 90% of the total procedure requirements.

3.2.2. Sensitivity to the method parameters

An analysis of the proposed clustering procedure has been run in order to
assess the algorithm sensitivity to parameter choice, and to determine an op-
timal configuration for engine combustion chemistry applications, intended as
the better tradeoff between computational efficiency, while still maintaining full
accuracy of the simulation results. In particular, the influence of temperature
grid discretization has been studied, considering values ranging from ET = 5K
to ET = 100K; species dimensional spans sY have been tested, ranging from
sY = 3 up to sY = 6; finally, the adoption of the four proposed species subsets of
Table 4 has been analysed. For all of the analyses, the measure of the simulation
accuracy has been computed with an error function, that has been developed in
order to quantify the deviations from the full chemistry case by computing the
numerical average relative squared discrepancies in terms of average in-cylinder
pressure and temperature, at a ∆θ = 1◦CA pace:
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Figure 9: Comparison between standard and bounding-box-constrained k-means cell cluster-
ing, operating case 1. Left: in-cylinder pressure and heat release traces; right: cumulative
CPU times for solving fluid flow, chemistry ODE system, and cell clustering.

e =
1

θIV C − θEV O

[∫ θEV O

θIV C

∣∣pfull (θ)− pclu (θ)
∣∣

pfull (θ)
dθ+ (15)

+

∫ θEV O

θIV C

∣∣T full (θ)− T clu (θ)
∣∣

T full (θ)
dθ

]
;

in the formulation, the full superscript indicates the reference run with full
chemistry solution in each computational cell, and clu indicates the engine simu-
lation with cell-clustered chemistry. The results of the analysis are summarized
in Figure 15, in terms of error function value and overall CPU time of the simula-
tions. As expected, an increase the dimensions of the chosen species subset leads
to a general increase in overall accuracy, at a higher computational cost that can
increase by two or three times, and with a slightly less than logarithmic trend
with the dimensions of the subset; at the simplest subset choices, i.e. S4 and
S5, however, no significant differences can be observed, mainly due to the utter-
most influence of the major species. As far as the dependency on temperature
accuracy is concerned, the plot shows that reducing the temperature grid width
significantly increases the overall simulation time only at values of ET < 20K,
while at the highest values of ET the CPU time saving does not appear to be
worth the corresponding increase in simulation error. A different behaviour of
the clustering procedure has instead been observed with respect to a change
in species span, sY : all of the simulations were completed in similar amounts
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Figure 10: Comparison between standard and bounding-box-constrained k-means cell clus-
tering, operating case 2. Left: in-cylinder pressure and heat release traces; right: cumulative
CPU times for solving fluid flow, chemistry ODE system, and cell clustering.

of time, with small or even negligible improvements in terms of accuracy at in-
creasing values of the grid span along the species dimensions. This phenomenon
appears to confirm that the high-dimensional representation implies very sparse
data arrangement within the image space, where the temperature dimension
accuracy rules over the whole clustering process, while initialising more cluster
centers along the species dimensions often has them be in empty zones of the
domain.

Finally, in Figure 16 the impact of different clustering parameters on the sim-
ulations of operating case 1 has been plotted in terms of in-cylinder species
mass fractions of some important species; in all of the plots, it appears that the
most important deviations from the reference full chemistry simulation occur
towards the end of the simulation and at the more reactive species, such as OH
and HO2; the general trend is however that a very good agreement with the ref-
erence solution is respected by all of the cases with cell clustering. Overall, the
optimal configuration for the clustering algorithm has been chosen as the one at
the ‘elbow’ of the CPU times curve, i.e. at the values where a further increase in
clustering accuracy leads to a significant increase in computational needs that
is not justified by a similar increase in simulation accuracy: ET = 20K, sY = 4,
S = S5.

4. Concluding remarks
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Figure 11: Comparison between standard and bounding-box-constrained k-means cell clus-
tering, operating case 3. Left: in-cylinder pressure and heat release traces; right: cumulative
CPU times for solving fluid flow, chemistry ODE system, and cell clustering.

A novel approach for clustering chemically reacting cells in multidimensional
CFD simulations has been presented. The approach relies on a high-dimensional
representation of the chemical state space. An unsupervised initial cluster par-
titioning procedure initialises the distribution of cluster centers in the variables
space; then, a bounding-box-constrained (BBC) k-means algorithm pursues
data clustering, with minimum computational effort even at high dimension-
ality, and preserving cluster center sparsity. The ODE system describing fuel
chemistry is integrated in every cell-averaged cluster; the results of the integra-
tion are then mapped back to each cell according to the methodoloty proposed
by Babajimopoulos et al. [35] and by Liang et al. [36]. The procedure has then
been validated by modelling a small, high speed direct injected diesel engine, at
three operating conditions which operate different combustion modes. Sensitiv-
ity analyses have also been carried out in order to assess the algorithm validity
at different desired clustering parameters, including optimal temperature and
species sparsity, and selected species subset. Overall, the following conclusions
are drawn:

• a bounding-box-constrained k-means algorithm proved to be suitable to
cluster high-dimensional chemistry datasets, whose behaviour is strongly
non-linear, as the final cluster centers maintain a desirable sparsity pattern
within the variables’ space, avoiding excessive mixing;

• the unsupervised grid-like cluster center initialisation contributes to con-
vergence of the BBC k-means algorithm, which execution required signif-
icantly lower computational times than the standard k-means approach;
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Figure 12: Comparison between predicted in-cylinder local temperature values [K] and some
important species mass fractions at operating case 1, engine speed 1500rpm, CA = 8.0 degrees
ATDC. Full chemistry computation (left) vs. BBC k-means-based clustering (right).

• the optimal clustering configuration was ruled by temperature require-
ments, at grid values around ET = 15− 20K;

• a subset of the most important combustion reactants and products, S =
{C7H16, O2, HO2, CO2, H2O}, with an initial span of sY = 4 centers along
each dimension was found to be the optimal trade-off between accuracy
and computing time;

• simulated NOx emissions showed a very good agreement of the clustered
simulation with both the full-chemistry solution and the experimental da-
tum, even if none of the NOx species was included in the clustering al-
gorithm’s species subset. This suggests that the agreement is good also
cell-by-cell on a local basis, which is fundamental for correctly predicting
overall engine-out emissions;

• the limited computational requirements of the proposed procedure make
it suitable for large scale computations on distributed memory systems,
where it can be run on each node to speed up the solution of combustion
chemistry, when a significant number of cells has to be solved.
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Figure 15: Sensitivity analysis of the clustering-remapping approach at the three operating
cases of Table 3: species subset (top), temperature accuracy (center), species span (bottom).
Red lines with triangle marks plot error values, Blue lines with square marks represent overall
simulation times.
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Figure 16: Predicted in-cylinder mass fractions of some important species at varying clustering
parameters, for operating case 1: species span (top), temperature span (center), species subset
(bottom). Full chemistry solution (symbols) vs. clustered-chemistry cases (lines).
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