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Abstract: Advanced iterative solvers and preconditioners were incorporated into the FRESCO engine CFD code. The original 

solution of linear systems was performed using a matrix-free Conjugate Residual method with Jacobi preconditioning. In this study, 

a sparse matrix formulation for the Laplacian operator was defined and implemented with the CSR format; a parallel version of the 

GMRES iterative solver was implemented and tested, along with several LU-decomposition based sparse matrix preconditioners, 

and a local matrix reordering scheme with the Reverse Cuthill-McKee algorithm. The computational performance of several solver, 

preconditioner and reordering choices was tested with both a full-mesh and a sector-mesh engine combustion test-cases, in both 

flow-only configuration and during combustion with hundreds of active species equations. The optimal solver configuration 

achieved an order of magnitude speedup versus the original setup.

Introduction 
 
Multidimensional computational fluid dynamics (CFD) 

simulations of engine combustion can support and simplify 

the design process by providing additional insight that even 

expensive experimental facilities are not capable of, 

provided that the right answer is produced in a reasonable 

amount of time for the combustion engineer. Turnaround 

times for engine CFD simulations should be well within 10 

to 15 hours, i.e., between the time the engineer leaves the 

office after work and when he/she goes back to it the next 

day. In order to reduce this time, appropriate usage of High 

Performance Computing (HPC) resources is crucial: 

combustion simulations in real-world geometries have 

complex, large grids which require robust and accurate 

solvers. Modern users also employ medium-sized reaction 

mechanisms for combustion kinetics calculations; these can 

feature hundreds of species, which dramatically increase the 

number of finite-volume equations being solved, even if they 

are not all simultaneously active throughout the simulation. 

In this work, we addressed linear system solution 

performance in the FRESCO CFD platform [1], among the 

most computationally demanding parts of the code while 

carrying out large-scale simulations. The following solver 

improvements were addressed: 

• Linear system solver. The original, KIVA-based 

matrix-free conjugate residual method [2,3] was 

replaced by a more efficient, parallel and object-

oriented implementation of the Generalized Minimum 

RESidual (GMRES) solver [4]. 

• Matrix handling and preconditioning. Explicit matrix 

handling for the Laplacian operators was implemented 

using the parallel Compressed Sparse Row (CSR) 

matrix format class [5]. General-purpose, incomplete 

LU decomposition-based (ILU) preconditioners were 

implemented and assembled in parallel with the 

additive Schwarz method. 

• Reordering. In order to reduce fill-in of the LU 

decomposition, the bandwidth minimizing symmetric 

Reverse Cuthill-McKee (RCM) algorithm for matrix 

reordering was implemented and tested [6]; 

• Convergence criteria. Once the general-purpose 

GMRES performance bottleneck was identified in its 

convergence criterion, additional physics-based 

convergence criteria were defined and evaluated. 

An optimal choice of solver and preconditioner parameters 

was eventually defined for all the equations, and a reduction 

of solver demand by approximately one order of magnitude 

was achieved against the original configuration.  

The FRESCO platform 
 

This study was performed using FRESCO [1], an object-

oriented, parallel platform for multidimensional engine 

simulations written in modern Fortran. The code implements 

an unstructured, parallel volume-of-fluid solver for the 

Navier Stokes equations with automatic domain 

decomposition for variable-topology meshes. Mesh 

handling features body-fitted discretization for maximum 

accuracy. Spray models for fuel injection feature advanced 

parallel algorithms for breakup, collision, vaporization and 

near-nozzle flow dynamics [7]. Combustion chemistry is 

handled by a sparse analytical Jacobian chemistry solver and 

high-dimensional-clustering based chemistry dimension 

reduction [5]. The solver implements an explicit first-order 

time integration scheme using the Arbitrary Lagrangian-

Eulerian splitting of Hirt et al. [8], useful for advection-

dominated flows such as those in internal combustion 

engines. First, the Lagrangian derivatives for the momentum 

(including spray particle coupling), mass conservation, 

energy and turbulence equations are solved in an implicit 



fashion, using a second-order central differencing scheme 

for the face quantities. Pressure coupling is iterated with the 

momentum equation using the SIMPLE procedure. Then, 

the advection terms are computed during a rezoning step by 

fluxing quantities from the fictitious Lagrangian mesh to the 

actual, Eulerian node positions using an upwind scheme with 

van Leer’s min-mod flux limiter [9]. An overview of 

FRESCO’s capabilities and research being carried out with 

it is reported in Figure 1; for a more detailed description of 

FRESCO and its sub-models, the reader is referred to 

reference [1]. 

 

Linear system solution 

First-order implicit time differencing is employed during the 

moving-with-the-fluid Lagrangian stage of the ALE 

procedure for several field quantities, in order to improve 

solution accuracy and allow for faster turnaround due to 

larger time-steps. For a typical simulation, one must solve 

one momentum conservation equation, two energy equations 

(temperature and pressure within the SIMPLE loop), two 

turbulence equations (i.e. for a RANS k-epsilon model), and 

a variable number of mass conservation equations per 

timestep. The following equations were addressed [2]: 

Pressure ����� � � Δ� 	 ∇��. ���� � �� � � � �� � ���� p� � Δ� � �u ⋅ ����  

Temperature 
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Figure 1. Overview of FRESCO’s capabilities and case 

studies. 
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The two-equation GRNG k-epsilon model is employed in the 

current study, solving for turbulence kinetic energy and its 

dissipation rate: ��1 � E� 23 �� � ��� � Δ� G>H> �I � Δ�(�./J 	 ∇�0$�. ���K � H�
� �1 � E�� 23 �� � ��� H> � Δ� @�AB�: ∇AB 

�L1 � E�MN,P �� � ��� � M�,PΔ� G>H>Q I � Δ�(�./J 	 ∇�0$�. ���K � G�
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Δ�R> �MST�UP: ∇V�
� �U: ∇V� W�1 � W WX⁄ �1 � ZWN �
� MN,P �� � ��� �1 � E��G> 

where δV = VB>V? 1 : 0 is a flag which controls usage of the 

explicit or implicit value of k and ε during the solution: the 

implicit value is used whenever the cell is expanding 

(VB>V), while the time-n value, moved to the right-hand-

side of the equation, is used otherwise. 

 

Finally, the momentum equation was not included in the 

present study: it converges in a few iterations also matrix-

free and non-preconditioned [10], and building and 

preconditioning its three matrices for the x,y,z components 

would certainly make its solution more computationally 

expensive. 

 

Laplacian matrix formulation 
 

In FRESCO, Laplacian terms for a generic scalar cell field φ 

are approximated employing the divergence theorem to 

replace the finite-volume integral with a surface integral: 

[ ∇�\ ��� � [ ∇ ⋅ �∇\� ��� � [ ∇\� ⋅ ] �^_ . 

Face-centered dot products between the field gradient and 

the face normal are estimated by building a local coordinate 

system as represented in Figure 2, and changing the basis 

from the Cartesian coordinate system (x,y,z) to this local 

system. Following the example from [2], the local coordinate 

system is built connecting the cell centroids from the two 

cells neighboring the face, as well as two pairs of the face’s 

opposite edge centroids. In case the face is a triangle, one 

edge will be missing; it is replaced with the face centroid 

location which, as long as the face has positive area, will still 

ensure that all three vectors are linearly independent. 

The change-of-basis matrix is hence given by: 

` � abcbdbef � agh,>i& � gh jh,>i& � jh kh,>i& � khg%N � g%T j%N � j%T k%N � k%Tg%� � g%l j%� � j%l k%� � k%l f; 



The local face area normal vector can be estimated in the 

local coordinate system by applying a coordinate change of 

 
Figure 2. Local coordinate system for face gradient evaluation. 
 

basis, i.e.: `#cm�no � `#cp � �� 

 

since this local face normal term only depends on the mesh 

geometry, and it can be pre-computed by solving one 3x3 

linear system per face and stored as “geometric coefficients” 

c which will be a building block of the Laplacian matrix for 

any scalar fields.  

The field gradient term from the local coordinate system can 

be simply evaluated as: 

∇\�nq � �\�(T rc � �\�(� rd � �\�(N re � a\>i& � \h\%N � \%T\%� � \%lf, 
i.e., the linear dependency of the local cell Laplacian on 

neighbor cell values is achieved:  ∇\� ⋅ �� � !Ts\>i& � \ht � !�s\%N � \%T t � !Ns\%� � \%lt, 
 

since each edge-centered value is evaluated as the average 

of its neighbor-cell values: 

\% � T>uvw � xuvw,yuuvwyz{ . 
Each cell’s Laplacian eventually depends on a set of face-

valued gradient terms which linearly depend on the neighbor 

cell field values via sums of geometric coefficients (with 

appropriate sign). So, it is possible to extract a matrix-based 

Laplacian operator of the scalar cell field:  

	 ∇�\ ��� � | \, 
| � 	 ∇�. � ⋅ ] �^_ . 

The Laplacian matrix L has (ncells x ncells) size and sparse 

connectivity and can be used to solve systems of equations 

involving the Laplacian operator. Figures 3 and 4 represent 

the Laplacian matrix structure for the Sandia 1.9L light-duty 

single-cylinder engine mesh, with 725k cells, employed in 

previous studies (e.g., [11]). The entire mesh (“global 

matrix”) was decomposed in 72 ranks using ParMETIS [12], 

and globally owns a block-diagonal structure. Each CPU 

only stores its own block (“local matrix”), which is fully 

sparse, such as represented in Figure 4.  

Matrix preconditioning and reordering 
 

All Krylov subspace methods such as GMRES [4] are 

guaranteed to converge in at most n iterations, where n is the 

problem size, i.e., when the Krylov subspace is complete. 

However, this is usually impractical since n - equal to the 

number of cells in the finite-volume domain – can be a very 

large number. Preconditioning the system matrix means 

applying an approximate inverse to the problem, in order to 

pack the matrix’s eigenvalues as close as possible to unity, 

thus reducing number of iterations needed to achieve 

convergence. Full LU decomposition preconditioning would 

lead to the exact matrix inverse, hence solution would be 

achieved in just one iterations. Hence, ‘good’ 

preconditioning is the one which achieves optimal 

performance as the best trade-off between increasing 

preconditioning time and decreasing number of solver 

iterations. In the current GMRES implementation, a 

preconditioned residual is sought for by solving for a 

preconditioned residual vector:  `/ � } � mg, 
where M is the preconditioning matrix, pre-computed and 

already stored in terms of an LU decomposition. 

 
Figure 3. Laplacian sparsity pattern for the Sandia 1.9L engine 

mesh (725k cells), partitioned in 72 CPUs using ParMETIS [12]. 

In general, one wants to have a preconditioner which is as 

close as possible to the full LU decomposition, but with 

maximum sparsity. As Figure 5 shows, full LU 

decomposition leads to severe fill-in, i.e., the decomposed 

matrix is much more dense than the original sparse matrix. 

This is usually unacceptable both memory- and CPU-

intensiveness-wise. Two incomplete LU-decomposition 

preconditioners were implemented in this study, besides the 

original matrix-free method:  

Jacobi. Jacobi preconditioning, or the original option, is a 

successful choice because of its limited, O(n), memory and 

evaluation requirements; however, this is the simplest and 

possibly less accurate preconditioner choice. It essentially 

just scales the diagonal elements, while discarding all 

connectivity-based information of the matrix. 

ILU0. The simplest form of incomplete LU preconditioner 

~h,>i& ~h
~%N

~%T

~%� ~%l

∇\� ⋅ m�
m�



 
Figure 4. Sparsity patterns of local Laplacians of CPUs 15, 40, 71. 

 
Figure 5. Sparsity pattern of the full LU decomposition for 

the Laplacian matrix block of rank 40. 

assumes that the sparsity structure of the LU decomposition 

is the same as the non-inverted matrix sparsity. This strategy 

is memory-efficient as structure reallocations are avoided; 

though a pretty crude approximation, as ILU’s structure is 

completely unrelated with the actual LU structure, it’s still 

more complex than the original diagonal preconditioning, 

and often used as a good non-optimized preconditioner 

choice [13].   

ILUT. Saad’s incomplete LU with dual truncation strategy 

was implemented as well [14]. It performs a flexible 

truncated sparse LU decomposition based on two strategies: 

the sparsity structure order (k, or level-of-fill) is truncated to 

the sparsity structure of Ak; and further off-diagonal 

elements are dropped if they’re smaller – by a threshold, εd 

– compared to their corresponding diagonal value. 

Reordering. We implemented the symmetric RCM matrix 

reordering algorithm for local matrix reordering, with the 

aim of improving preconditioner performance. Global 

ordering is still performed by the ParMETIS domain 

decomposition algorithm; in this way, expensive MPI 

communications are avoided, and solver-optimal matrix 

ordering can be achieved at the local level. Figure 6 shows 

 
Figure 6. (top) Sparsity pattern of the rank 40 Laplacian 

matrix, reordered using the RCM algorithm; (bottom) full 

LU decomposition of the reordered matrix. 

 
Figure 7. View of the full and sector meshes employed in 

this study. 

mesh ncells nverts 

sector 99641 104943 

full 724055 753735 

Table 1. Test-case mesh properties. 

the effects of matrix ordering on the local matrix of cpu rank 

#40: the ordered matrix has a much smaller bandwidth, and 

its full LU decomposition has 65.4% fewer non-zero 

elements than the non-sorted matrix’s one. Because LU fill-

in now happens only within the original matrix bandwidth, 

also the ILU preconditioners can also benefit from 



reordering: the ILU structure is not unrelated to the original 

matrix’s structure anymore, and even the ILU0 

preconditioner can provide a decent approximation of the 

decomposition. 

Convergence criterion. The GMRES method based on 

residual norm minimization. During this inner iterative 

procedure, a residual norm is always known, hence, its 

convergence check compares the norm of the residual with 

its initial value [4]. We found this condition to bee too 

restrictive for our case, where each solution is initialized  

with a good approximation, extrapolated from the previous 

step. So, physics-based convergence criteria were 

implemented based on those of [2]. These checks can only 

be performed once per iteration, while the original initial-

residual criterion is kept within the least squares iteration.  

Results and discussion 
 

We tested several solver and preconditioner configurations 

against two reference engine simulation setups [11], 

modeling the Sandia 1.9L optical platform, represented in 

Figure 7: one full engine geometry, which also includes 

ports, runners and intake/exhaust plenums, and one 1/7th 

cylinder sector mesh case. All simulations were run on 

Cineca’s Galileo supercomputer, each compute node 

equipped with 2x18-core Intel Xeon E5-2697v4 CPUs and 

128GB RAM. For both meshes, a full IVC to EVO 

simulation was run, and a 100-timestep test region was 

selected out of the full time range, where both spray and 

combustion were present. 

Sector simulations. As reported in Figure 8, the pressure 

equation dominates over the whole number of linear solver 

iterations, regardless of the solution approach. The Jacobi-

preconditioner-backed conjugate residual solver, as well as 

GMRES with the non-reordered ILU0 preconditioner, 

needed to converge more than one order of magnitude more 

iterations than all other configurations. As expected, the 

ILU0 preconditioner benefited the most from matrix 

reordering (RCM employed), but reordering was  

 
Figure 8. Sector mesh testcase, number of solver iterations 

per equation, 18CPU domain decomposition. 

nevertheless beneficial for all solver configurations, in 

particular for the badly conditioned pressure equation.  

As Figure 9 summarizes, the cost of building the 

preconditioner is reduced by a factor between 3 to 5 when 

employing matrix reordering, thanks to the reduced fill-in 

and reduced cache misses due to smaller bandwidth; there is 

up to one order of magnitude increase in wall-time for 

improved accuracy moving from ILU0 to ILU(10). In all 

cases, these relative relationships do not change as the matrix 

size is reduced, by increasing the number of CPUs. The 

cumulative cost of the iterations is significantly affected by 

the preconditioner choice, ILU(10)+RCM performing the 

best for all numbers of CPUs tested. 

Full mesh. The full geometry tests were conducted well into 

combustion, where the flow non-uniformities are relevant. 

Figure 10 shows, solver performance is dramatically 

affected by the preconditioner choice. The conjugate 

residual solver with Jacobi preconditioning required a total 

of 180 solver iterations, versus a minimum of 4 for GMRES 

with ILU(10) preconditioner and initial residual-based 

convergence. GMRES with ILU(10) and physics-based 

convergence exhibited second-best performance with 13 

total solver iterations.  

Finally, computational performance in Figure 11 shows the 

amount of time being spent on building the preconditioner, 

solving for the inverse of the preconditioned matrix into a 

M-1⋅v matrix-vector product, and other iteration time such 

as for evaluating the linear system’s residual vector, or 

right hand side. 

 

 
Figure 9. Cost of (top) building the preconditioner and 

(bottom) solving the linear system vs. number of CPUs for 

the sector geometry. 
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Figure 10. Full mesh testcase: number of solver iterations 

per equation, 72CPU domain decomposition. 

 

 
 

Figure 11. Linear solver performance profiling for (top) 

temperature and (bottom) pressure equations. 

‘preconditioner’ indicates building time; ‘matvec’ indicates 

preconditioned matrix-vector products; ‘solve’ indicates 

residual and right-hand-side calculation. 

Conclusions 
 

We implemented advanced matrix handling, preconditioners 

and solvers for multidimensional engine simulations, 

including improvements with reordering and solver 

convergence criteria. Performance tests against full-

geometry and sector configurations highlighted an optimal 

configuration made of the GMRES solver with a locally-

reordered matrix and an ILU(10) preconditioner, 

independent of the number of CPUs used. The optimal 

configuration achieved a reduction in number of solver 

iterations by more than one order of magnitude against the 

original code setup. Future work fill focus on run-time 

optimization of preconditioner and solver settings for 

maximum speedup. 
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