
29th International Multidimensional Engine Modeling User’s Group Meeting at the SAE Congress

Detroit, MI, 8 April 2019

Robust preconditioning techniques for iterative solvers in scalable engine

simulations using FRESCO

F. Perini1,2, S. Bnà3, E. Pascolo3, I. Spisso3, R.D. Reitz1,2

1University of Wisconsin-Madison, USA
2Wisconsin Engine Research Consultants LLC, USA

3Supercomputing Applications and Innovation (SCAI), CINECA, Italy

Abstract: Advanced iterative solvers and preconditioners were incorporated into the FRESCO engine CFD code. The original

solution of linear systems was performed using a matrix-free Conjugate Residual method with Jacobi preconditioning. In this study,

a sparse matrix formulation for the Laplacian operator was defined and implemented with the CSR format; a parallel version of the

GMRES iterative solver was implemented and tested, along with several LU-decomposition based sparse matrix preconditioners,

and a local matrix reordering scheme with the Reverse Cuthill-McKee algorithm. The computational performance of several solver,

preconditioner and reordering choices was tested with both a full-mesh and a sector-mesh engine combustion test-cases, in both

flow-only configuration and during combustion with hundreds of active species equations. The optimal solver configuration

achieved an order of magnitude speedup versus the original setup.

Introduction

Multidimensional computational fluid dynamics (CFD)

simulations of engine combustion can support and simplify

the design process by providing additional insight that even

expensive experimental facilities are not capable of,

provided that the right answer is produced in a reasonable

amount of time for the combustion engineer. Turnaround

times for engine CFD simulations should be well within 10

to 15 hours, i.e., between the time the engineer leaves the

office after work and when he/she goes back to it the next

day. In order to reduce this time, appropriate usage of High

Performance Computing (HPC) resources is crucial:

combustion simulations in real-world geometries have

complex, large grids which require robust and accurate

solvers. Modern users also employ medium-sized reaction

mechanisms for combustion kinetics calculations; these can

feature hundreds of species, which dramatically increase the

number of finite-volume equations being solved, even if they

are not all simultaneously active throughout the simulation.

In this work, we addressed linear system solution

performance in the FRESCO CFD platform [1], among the

most computationally demanding parts of the code while

carrying out large-scale simulations. The following solver

improvements were addressed:

• Linear system solver. The original, KIVA-based

matrix-free conjugate residual method [2,3] was

replaced by a more efficient, parallel and object-

oriented implementation of the Generalized Minimum

RESidual (GMRES) solver [4].

• Matrix handling and preconditioning. Explicit matrix

handling for the Laplacian operators was implemented

using the parallel Compressed Sparse Row (CSR)

matrix format class [5]. General-purpose, incomplete

LU decomposition-based (ILU) preconditioners were

implemented and assembled in parallel with the

additive Schwarz method.

• Reordering. In order to reduce fill-in of the LU

decomposition, the bandwidth minimizing symmetric

Reverse Cuthill-McKee (RCM) algorithm for matrix

reordering was implemented and tested [6];

• Convergence criteria. Once the general-purpose

GMRES performance bottleneck was identified in its

convergence criterion, additional physics-based

convergence criteria were defined and evaluated.

An optimal choice of solver and preconditioner parameters

was eventually defined for all the equations, and a reduction

of solver demand by approximately one order of magnitude

was achieved against the original configuration.

The FRESCO platform

This study was performed using FRESCO [1], an object-

oriented, parallel platform for multidimensional engine

simulations written in modern Fortran. The code implements

an unstructured, parallel volume-of-fluid solver for the

Navier Stokes equations with automatic domain

decomposition for variable-topology meshes. Mesh

handling features body-fitted discretization for maximum

accuracy. Spray models for fuel injection feature advanced

parallel algorithms for breakup, collision, vaporization and

near-nozzle flow dynamics [7]. Combustion chemistry is

handled by a sparse analytical Jacobian chemistry solver and

high-dimensional-clustering based chemistry dimension

reduction [5]. The solver implements an explicit first-order

time integration scheme using the Arbitrary Lagrangian-

Eulerian splitting of Hirt et al. [8], useful for advection-

dominated flows such as those in internal combustion

engines. First, the Lagrangian derivatives for the momentum

(including spray particle coupling), mass conservation,

energy and turbulence equations are solved in an implicit

fashion, using a second-order central differencing scheme

for the face quantities. Pressure coupling is iterated with the

momentum equation using the SIMPLE procedure. Then,

the advection terms are computed during a rezoning step by

fluxing quantities from the fictitious Lagrangian mesh to the

actual, Eulerian node positions using an upwind scheme with

van Leer’s min-mod flux limiter [9]. An overview of

FRESCO’s capabilities and research being carried out with

it is reported in Figure 1; for a more detailed description of

FRESCO and its sub-models, the reader is referred to

reference [1].

Linear system solution

First-order implicit time differencing is employed during the

moving-with-the-fluid Lagrangian stage of the ALE

procedure for several field quantities, in order to improve

solution accuracy and allow for faster turnaround due to

larger time-steps. For a typical simulation, one must solve

one momentum conservation equation, two energy equations

(temperature and pressure within the SIMPLE loop), two

turbulence equations (i.e. for a RANS k-epsilon model), and

a variable number of mass conservation equations per

timestep. The following equations were addressed [2]:

Pressure ����� � � Δ� 	 ∇��. ���� � �� � � � �� � ���� p� � Δ� � �u ⋅ ����

Temperature

 � � !"#$%&'(��) �*+ ,-
Δ�./$ 	 ∇�0$!-�. ���� 1 *� � !"#$%&'2*3 � Δ*3%4-56

Figure 1. Overview of FRESCO’s capabilities and case

studies.

where

!"#$%&' � � � ��2
�8 �*+ ,-(� �) �*+ ,-

Δ*3%4-5 � 1�) �*+ ,-
:� � ��2(� ;�8 �*+ ,-T= � ��3 � �>�? � Δ� @�AB�: ∇ABD

Turbulence

The two-equation GRNG k-epsilon model is employed in the

current study, solving for turbulence kinetic energy and its

dissipation rate: ��1 � E� 23 �� � ��� � Δ� G>H> �I � Δ�(�./J 	 ∇�0$�. ���K � H�
� �1 � E�� 23 �� � ��� H> � Δ� @�AB�: ∇AB

�L1 � E�MN,P �� � ��� � M�,PΔ� G>H>Q I � Δ�(�./J 	 ∇�0$�. ���K � G�
� G>H>

Δ�R> �MST�UP: ∇V�
� �U: ∇V� W�1 � W WX⁄ �1 � ZWN �
� MN,P �� � ��� �1 � E��G>

where δV = VB>V? 1 : 0 is a flag which controls usage of the

explicit or implicit value of k and ε during the solution: the

implicit value is used whenever the cell is expanding

(VB>V), while the time-n value, moved to the right-hand-

side of the equation, is used otherwise.

Finally, the momentum equation was not included in the

present study: it converges in a few iterations also matrix-

free and non-preconditioned [10], and building and

preconditioning its three matrices for the x,y,z components

would certainly make its solution more computationally

expensive.

Laplacian matrix formulation

In FRESCO, Laplacian terms for a generic scalar cell field φ

are approximated employing the divergence theorem to

replace the finite-volume integral with a surface integral:

[∇�\ ��� � [∇ ⋅ �∇\� ��� � [∇\� ⋅] �^_ .

Face-centered dot products between the field gradient and

the face normal are estimated by building a local coordinate

system as represented in Figure 2, and changing the basis

from the Cartesian coordinate system (x,y,z) to this local

system. Following the example from [2], the local coordinate

system is built connecting the cell centroids from the two

cells neighboring the face, as well as two pairs of the face’s

opposite edge centroids. In case the face is a triangle, one

edge will be missing; it is replaced with the face centroid

location which, as long as the face has positive area, will still

ensure that all three vectors are linearly independent.

The change-of-basis matrix is hence given by:

` � abcbdbef � agh,>i& � gh jh,>i& � jh kh,>i& � khg%N � g%T j%N � j%T k%N � k%Tg%� � g%l j%� � j%l k%� � k%l f;

The local face area normal vector can be estimated in the

local coordinate system by applying a coordinate change of

Figure 2. Local coordinate system for face gradient evaluation.

basis, i.e.: `#cm�no � `#cp � ��

since this local face normal term only depends on the mesh

geometry, and it can be pre-computed by solving one 3x3

linear system per face and stored as “geometric coefficients”

c which will be a building block of the Laplacian matrix for

any scalar fields.

The field gradient term from the local coordinate system can

be simply evaluated as:

∇\�nq � �\�(T rc � �\�(� rd � �\�(N re � a\>i& � \h\%N � \%T\%� � \%lf,
i.e., the linear dependency of the local cell Laplacian on

neighbor cell values is achieved: ∇\� ⋅ �� � !Ts\>i& � \ht � !�s\%N � \%T t � !Ns\%� � \%lt,

since each edge-centered value is evaluated as the average

of its neighbor-cell values:

\% � T>uvw � xuvw,yuuvwyz{ .
Each cell’s Laplacian eventually depends on a set of face-

valued gradient terms which linearly depend on the neighbor

cell field values via sums of geometric coefficients (with

appropriate sign). So, it is possible to extract a matrix-based

Laplacian operator of the scalar cell field:

	 ∇�\ ��� � | \,
| � 	 ∇�. � ⋅] �^_ .

The Laplacian matrix L has (ncells x ncells) size and sparse

connectivity and can be used to solve systems of equations

involving the Laplacian operator. Figures 3 and 4 represent

the Laplacian matrix structure for the Sandia 1.9L light-duty

single-cylinder engine mesh, with 725k cells, employed in

previous studies (e.g., [11]). The entire mesh (“global

matrix”) was decomposed in 72 ranks using ParMETIS [12],

and globally owns a block-diagonal structure. Each CPU

only stores its own block (“local matrix”), which is fully

sparse, such as represented in Figure 4.

Matrix preconditioning and reordering

All Krylov subspace methods such as GMRES [4] are

guaranteed to converge in at most n iterations, where n is the

problem size, i.e., when the Krylov subspace is complete.

However, this is usually impractical since n - equal to the

number of cells in the finite-volume domain – can be a very

large number. Preconditioning the system matrix means

applying an approximate inverse to the problem, in order to

pack the matrix’s eigenvalues as close as possible to unity,

thus reducing number of iterations needed to achieve

convergence. Full LU decomposition preconditioning would

lead to the exact matrix inverse, hence solution would be

achieved in just one iterations. Hence, ‘good’

preconditioning is the one which achieves optimal

performance as the best trade-off between increasing

preconditioning time and decreasing number of solver

iterations. In the current GMRES implementation, a

preconditioned residual is sought for by solving for a

preconditioned residual vector: `/ � } � mg,
where M is the preconditioning matrix, pre-computed and

already stored in terms of an LU decomposition.

Figure 3. Laplacian sparsity pattern for the Sandia 1.9L engine

mesh (725k cells), partitioned in 72 CPUs using ParMETIS [12].

In general, one wants to have a preconditioner which is as

close as possible to the full LU decomposition, but with

maximum sparsity. As Figure 5 shows, full LU

decomposition leads to severe fill-in, i.e., the decomposed

matrix is much more dense than the original sparse matrix.

This is usually unacceptable both memory- and CPU-

intensiveness-wise. Two incomplete LU-decomposition

preconditioners were implemented in this study, besides the

original matrix-free method:

Jacobi. Jacobi preconditioning, or the original option, is a

successful choice because of its limited, O(n), memory and

evaluation requirements; however, this is the simplest and

possibly less accurate preconditioner choice. It essentially

just scales the diagonal elements, while discarding all

connectivity-based information of the matrix.

ILU0. The simplest form of incomplete LU preconditioner

~h,>i& ~h
~%N

~%T

~%� ~%l

∇\� ⋅ m�
m�

Figure 4. Sparsity patterns of local Laplacians of CPUs 15, 40, 71.

Figure 5. Sparsity pattern of the full LU decomposition for

the Laplacian matrix block of rank 40.

assumes that the sparsity structure of the LU decomposition

is the same as the non-inverted matrix sparsity. This strategy

is memory-efficient as structure reallocations are avoided;

though a pretty crude approximation, as ILU’s structure is

completely unrelated with the actual LU structure, it’s still

more complex than the original diagonal preconditioning,

and often used as a good non-optimized preconditioner

choice [13].

ILUT. Saad’s incomplete LU with dual truncation strategy

was implemented as well [14]. It performs a flexible

truncated sparse LU decomposition based on two strategies:

the sparsity structure order (k, or level-of-fill) is truncated to

the sparsity structure of Ak; and further off-diagonal

elements are dropped if they’re smaller – by a threshold, εd

– compared to their corresponding diagonal value.

Reordering. We implemented the symmetric RCM matrix

reordering algorithm for local matrix reordering, with the

aim of improving preconditioner performance. Global

ordering is still performed by the ParMETIS domain

decomposition algorithm; in this way, expensive MPI

communications are avoided, and solver-optimal matrix

ordering can be achieved at the local level. Figure 6 shows

Figure 6. (top) Sparsity pattern of the rank 40 Laplacian

matrix, reordered using the RCM algorithm; (bottom) full

LU decomposition of the reordered matrix.

Figure 7. View of the full and sector meshes employed in

this study.

mesh ncells nverts

sector 99641 104943

full 724055 753735

Table 1. Test-case mesh properties.

the effects of matrix ordering on the local matrix of cpu rank

#40: the ordered matrix has a much smaller bandwidth, and

its full LU decomposition has 65.4% fewer non-zero

elements than the non-sorted matrix’s one. Because LU fill-

in now happens only within the original matrix bandwidth,

also the ILU preconditioners can also benefit from

reordering: the ILU structure is not unrelated to the original

matrix’s structure anymore, and even the ILU0

preconditioner can provide a decent approximation of the

decomposition.

Convergence criterion. The GMRES method based on

residual norm minimization. During this inner iterative

procedure, a residual norm is always known, hence, its

convergence check compares the norm of the residual with

its initial value [4]. We found this condition to bee too

restrictive for our case, where each solution is initialized

with a good approximation, extrapolated from the previous

step. So, physics-based convergence criteria were

implemented based on those of [2]. These checks can only

be performed once per iteration, while the original initial-

residual criterion is kept within the least squares iteration.

Results and discussion

We tested several solver and preconditioner configurations

against two reference engine simulation setups [11],

modeling the Sandia 1.9L optical platform, represented in

Figure 7: one full engine geometry, which also includes

ports, runners and intake/exhaust plenums, and one 1/7th

cylinder sector mesh case. All simulations were run on

Cineca’s Galileo supercomputer, each compute node

equipped with 2x18-core Intel Xeon E5-2697v4 CPUs and

128GB RAM. For both meshes, a full IVC to EVO

simulation was run, and a 100-timestep test region was

selected out of the full time range, where both spray and

combustion were present.

Sector simulations. As reported in Figure 8, the pressure

equation dominates over the whole number of linear solver

iterations, regardless of the solution approach. The Jacobi-

preconditioner-backed conjugate residual solver, as well as

GMRES with the non-reordered ILU0 preconditioner,

needed to converge more than one order of magnitude more

iterations than all other configurations. As expected, the

ILU0 preconditioner benefited the most from matrix

reordering (RCM employed), but reordering was

Figure 8. Sector mesh testcase, number of solver iterations

per equation, 18CPU domain decomposition.

nevertheless beneficial for all solver configurations, in

particular for the badly conditioned pressure equation.

As Figure 9 summarizes, the cost of building the

preconditioner is reduced by a factor between 3 to 5 when

employing matrix reordering, thanks to the reduced fill-in

and reduced cache misses due to smaller bandwidth; there is

up to one order of magnitude increase in wall-time for

improved accuracy moving from ILU0 to ILU(10). In all

cases, these relative relationships do not change as the matrix

size is reduced, by increasing the number of CPUs. The

cumulative cost of the iterations is significantly affected by

the preconditioner choice, ILU(10)+RCM performing the

best for all numbers of CPUs tested.

Full mesh. The full geometry tests were conducted well into

combustion, where the flow non-uniformities are relevant.

Figure 10 shows, solver performance is dramatically

affected by the preconditioner choice. The conjugate

residual solver with Jacobi preconditioning required a total

of 180 solver iterations, versus a minimum of 4 for GMRES

with ILU(10) preconditioner and initial residual-based

convergence. GMRES with ILU(10) and physics-based

convergence exhibited second-best performance with 13

total solver iterations.

Finally, computational performance in Figure 11 shows the

amount of time being spent on building the preconditioner,

solving for the inverse of the preconditioned matrix into a

M-1⋅v matrix-vector product, and other iteration time such

as for evaluating the linear system’s residual vector, or

right hand side.

Figure 9. Cost of (top) building the preconditioner and

(bottom) solving the linear system vs. number of CPUs for

the sector geometry.

10
0

10
1

10
2

10
3

sector, number of iterations, 18CPU

CR

jacobi

maxabs

GMRES

ilu0

maxabs

GMRES

ilu0

maxabs

RCM

GMRES

ilu0

res0

RCM

GMRES

ilu(5)

maxabs

RCM

GMRES

ilu(10)

maxabs

GMRES

ilu(10)

maxabs

RCM

GMRES

ilu(10)

res0

RCM

species

temperature

pressure

tke

epsilon

48 18 36 72 108 144 180 216

number of CPUs

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

w
a

ll
ti

m
e

[s
]

sector, p eqn. preconditioning

CR, jacobi, maxabs

GMRES, ilu0, maxabs

GMRES, ilu0, maxabs, RCM

GMRES, ilu0, res0, RCM

GMRES, ilu(5), maxabs, RCM

GMRES, ilu(10), maxabs

GMRES, ilu(10), maxabs, RCM

GMRES, ilu(10), res0, RCM

48 18 36 72 108 144 180 216

number of CPUs

10
-2

10
-1

10
0

10
1

10
2

sector, p eqn. iterations

CR, jacobi, maxabs

GMRES, ilu0, maxabs

GMRES, ilu0, maxabs, RCM

GMRES, ilu0, res0, RCM

GMRES, ilu(5), maxabs, RCM

GMRES, ilu(10), maxabs

GMRES, ilu(10), maxabs, RCM

GMRES, ilu(10), res0, RCM

Figure 10. Full mesh testcase: number of solver iterations

per equation, 72CPU domain decomposition.

Figure 11. Linear solver performance profiling for (top)

temperature and (bottom) pressure equations.

‘preconditioner’ indicates building time; ‘matvec’ indicates

preconditioned matrix-vector products; ‘solve’ indicates

residual and right-hand-side calculation.

Conclusions

We implemented advanced matrix handling, preconditioners

and solvers for multidimensional engine simulations,

including improvements with reordering and solver

convergence criteria. Performance tests against full-

geometry and sector configurations highlighted an optimal

configuration made of the GMRES solver with a locally-

reordered matrix and an ILU(10) preconditioner,

independent of the number of CPUs used. The optimal

configuration achieved a reduction in number of solver

iterations by more than one order of magnitude against the

original code setup. Future work fill focus on run-time

optimization of preconditioner and solver settings for

maximum speedup.

Acknowledgements

The authors gratefully acknowledge support and

computational resources for this work at the Cineca super-

computing center by the EC Research Innovation Action

under the H2020 Program, through HPC-EUROPA3 grant

HPC17FFPU6.

References

1. Perini, F., Reitz, R.D., “FRESCO – an object-oriented, parallel platform

for internal combustion engine simulations”, International

Multidimensional Engine Modeling User’s Group Meeting at the SAE

Congress, 2018.

2. Torres D.J., Trujillo M.F., “KIVA-4: an unstructured ALE code for

compressible gas flow with sprays”, Journal of Computational Physics

219(2), 943-975, 2006.

3. M.J. Holst, “Notes on the KIVA-II Software and Chemically Reactive

Fluid Mechanics”, Lawrence Livermore National Laboratory, URCL-ID-

112019, 1992.

4. Saad, Y., Schultz, M.H., “GMRES: A generalized minimal residual

algorithm for solving nonsymmetric linear systems”, SIAM J. Sci. and

Stat. Comput. 7(3), 856-869, 1986.

5. Perini F., Galligani E., Reitz R.D., "An analytical Jacobian approach to

sparse reaction kinetics for computationally efficient combustion

modelling with large reaction mechanisms", Energy&Fuels 26 (8), 4804-

4822, 2012.

6. Liu, W.-H., Sherman, A.H., “Comparative Analysis of the Cuthill-

McKee and the Reverse Cuthill-McKee Ordering Algorithms for Sparse

Matrices”, SIAM J. Numer. Anal., 13(2), 198-213, 1976.

7. F. Perini and R.D. Reitz, "Improved atomization, collision and sub-grid

scale momentum coupling models for transient vaporizing engine

sprays", International Journal of Multiphase Flows 79(2016), 107-123.

8. Hirt C.W., Amsden A.A., Cook J.L., “An arbitrary Lagrangian-Eulerian

computing method for all flow speeds”, Journal of Computational

Physics 14(3), 227-253, 1974.

9. Van Leer B., “Towards the ultimate conservative difference scheme II.

Monotonicity and conservation combined in a second order scheme”,

Journal of Computational Physics 14 (4): 361–370, 1974.

10. L. Arnone, P. D’Ambra, S. Filippone, “A Parallel Version of KIVA-3

based on General Purpose Numerical Software and its Use in Two-Stroke

Engine Applications”, Practical Parallel Computing, ISBN 1-59033-127-

3, 2001.

11. Perini F., Busch S., Kurtz E., Warey A., Peterson R.C., Reitz R.D.,

“Limitations of Sector Mesh Geometry and Initial Conditions to Model

Flow and Mixture Formation in Direct-Injection Diesel Engines”, SAE

Technical Paper 2019-01-0204, 2019.

12. Karypis G., Kumar V., “A fast and high quality multilevel scheme for

partitioning irregular graphs”, SIAM Journal on Scientific Computing

20(1), 359-392, 1998.

13. Balay, S., Abhyankar, S., Adams, M., Brown, J., Brune, P., Buschelman,

K., Dalcin, L. D., Eijkhout, V., Gropp, W., Kaushik, D., Knepley, M.,

May, D., McInnes, L. Curfman, Munson, T., Rupp, K., Sanan, P., Smith,

B., Zampini, S., Zhang, H., and Zhang, H.. PETSc Users Manual

Revision 3.8. United States: N. p., 2017. Web.

14. Y. Saad, “ILUT: a dual threshold incomplete LU factorization”, in:

Numerical Linear Algebra With Applications, Wiley, 1994.

0

50

100

150

200
n

it
 [

-]
full, number of iterations, 72CPU

CR

jacobi

maxabs

GMRES

ilu0

maxabs

GMRES

ilu0

maxabs

RCM

GMRES

ilu0

res0

RCM

GMRES

ilu(5)

maxabs

RCM

GMRES

ilu(10)

maxabs

GMRES

ilu(10)

maxabs

RCM

GMRES

ilu(10)

res0

RCM

temperature

pressure

tke

epsilon

0

0.05

0.1

0.15

0.2

0.25

0.3

w
al

l-
ti

m
e

[s
]

full, pressure equation stats., 72CPU

CR

jacobi

maxabs

GMRES

ilu0

maxabs

GMRES

ilu0

maxabs

RCM

GMRES

ilu0

res0

RCM

GMRES

ilu(5)

maxabs

RCM

GMRES

ilu(10)

maxabs

GMRES

ilu(10)

maxabs

RCM

GMRES

ilu(10)

res0

RCM

preconditioner

matvec

solve

