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Abstract

We developed two approaches to speed up combustion chemistry simulations

by reducing the amount of time spent computing exponentials, logarithms, and

complex temperature-dependent kinetics functions that heavily rely on them.

The evaluation of these functions is very accurate in 64-bit arithmetic, but also

slow. Since these functions span several orders of magnitude in temperature

space, some of this accuracy can be traded with greater solution speed, provided

that the governing ordinary differential equation (ODE) solver still grants user-

defined solution convergence properties. The first approach tackled the exp()

and log() functions, and replaced them with fast approximations which per-

form bit and integer operations on the exponential-based IEEE-754 floating

point number machine representation. The second approach addresses complex

temperature-dependent kinetics functions via storage/retrieval. We developed

a function-independent piecewise polynomial approximation method with the

following features: it minimizes table storage requirements, it is not subject

to ill-conditioning over the whole variable range, it is of arbitrarily high order

n > 0, and is fully vectorized. Formulations for both approaches are presented;

and their performance assessed against zero-dimensional reactor simulations of

hydrocarbon fuel ignition delay, with reaction mechanisms ranging from 10 to

104 species. The results show that, when used concurrently, both methods al-

low global speed-ups of about one order of magnitude even with an already

highly-optimized sparse analytical Jacobian solver. The methods also demon-

strate that global error is within the integrator’s requested accuracy, and that

the solver’s performance is slightly positively affected, i.e., a slight reduction in

the number of timesteps per integration is seen.
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1. Introduction

The computational cost associated with the solution of stiff Ordinary Dif-

ferential Equations (ODEs) describing chemical kinetics is still one of the major

factors limiting the usage of detailed chemistry in multidimensional combustion

simulations [1]. In a chemically reactive gas-phase environment, conservation

equations for the closed system’s mass and energy appear as rates of change of

species mass fractions Yi and temperature T :

dYi
dt

= Ẏi =
Wi

ρ

nr∑
j=1

[(
ν′′j,i − ν′j,i

)
qj
]
, (1)

dT

dt
= Ṫ = − 1

c̄v

ns∑
i=1

UiẎi
Wi

,

when the mixture of i = 1, . . . , ns species Mi, is subject to a reaction mechanism,

i.e., a network of j = 1, . . . , nr chemical reactions:

ns∑
i=1

ν′j,iMi 

ns∑
k=1

ν′′j,kMk, j = 1, ..., nr; (2)

ν′ and ν′′ are sparse matrices containing stoichiometric reaction coefficients of

reactants and products respectively [2]. The system usually exhibits very stiff

behavior because of both the exponential form of the reaction rates, and the

strongly nonlinear coupling between species concentrations caused by the law

of mass action, as witnessed by the species’ mutual excitation rate [2]:

∂Ẏi
∂Yj

=
Wi

ρ

nr∑
k=1

{
νk,i
Yj

[
ν′k,jkf,k

ns∏
r=1

(
ρYr
Wr

)ν′
k,r

− ν′′k,jkr,k
ns∏
s=1

(
ρYs
Ws

)ν′′
k,s

]}
, (3)

where ρ is the system’s density, kf and kr the forward and reverse reaction

rates, W the species’ molecular weights. Because of its stiffness, time integra-

tion of the reactive system of Equation 1 is usually performed as an independent

ODE system even in multidimensional simulations, where an operator splitting5

scheme is employed to relax the solver integration constraints towards the flow

time scales (see [3]).

In recent years, several studies have addressed aspects of the chemical kinetics

ODE system to increase its computational efficiency. Some researchers have

focused on ODE solution methods for stiff systems [4–7] aimed at achieving10

time advancement of the solution with the least number of integrator timesteps.

Perhaps the greatest CPU time savings have been achieved by adopting fine-

tuned analytical formulations of the chemistry system and its Jacobian [2, 8, 9],
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coupled with sparse matrix algebra [10, 11] to take advantage of the reaction

mechanism’s sparsity. Some recent efforts have also attempted to exploit graph-15

ics processing units (GPUs) to increase throughput of the kinetics calculations

[12].

This study focuses on reducing the cost of evaluating reaction kinetics functions

involving exponentials and logarithms. Two approaches are presented: first,20

several fast approximations of the exp() and log() functions exploiting the

IEEE-754 floating-point number representation [13] were developed. Second, a

storage/retrieval approach for costly temperature-dependent functions was in-

troduced. A simulation matrix featuring 11 reaction mechanisms from 10 to

104 species, simulating ignition of fuel-air mixtures at conditions relevant to25

combustion devices was established, in order to assess the robustness, the accu-

racy and the speed of the proposed approaches. Combustion CFD simulations,

including 2D and 3D cases, were validated as well. The results demonstrate sig-

nificant speed-ups of almost an order of magnitude for the total CPU time even

in presence of analytical Jacobian and sparse algebra; plus, a stabilizing effect30

of the smoothed function approximations on the ODE solvers’ performance.

The major contributions of this work can be summarized as follows:

• A fast equally-spaced tabulation/polynomial interpolation approach for

exponentially-varying functions which has limited storage needs, is con-

tinuous in both function and derivative evaluations up to an arbitrary35

order, is defined piecewise like a spline, but its accuracy is not affected by

what happens far from the interpolation point;

• New, improved methods for fast evaluation of exponential and logarithm

functions, that provide not only a continuous function, but also continu-

ous derivatives. These methods improve on the fast exponential approach40

based on floating point representation manipulation methodology devel-

oped by [14] by using an arbitrary-order spline reconstruction of the man-

tissa, which compares favorably even to the most recent formulations [15].

2. Algorithm description

We developed methods to approximate the exponential and logarithm func-

tions for 64-bit (double precision) floating-point numbers complying with the

IEEE-745 standard [13]. This format represents a real number by subdividing

the 64-bit space into three integer strings, as reported in Figure 1:

r = (−1)
s

2x−b (1 +m) , (4)

where:45
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Fast Exponentiation

sign 
1 bit

exponent: 11 bits mantissa (fractional part) = 52 bits

exponent ∈ [10-308,10308]
x ∈ [0, 211-1]

x-1023 ∈ [-1023, 1024]

m ∈ [0, 1), � 1+m ∈ [1, 2)

A linear interpolation between the two successive powers that the 
exponent can express

±

6666655555555554444444444333333333322222222221111111111000000000

4321098765432109876543210987654321098765432109876543210987654321

Figure 1: IEEE-754 representation of a 64-bit (double) real number.

• s (1 bit) is the sign bit;

• x (11 bits) ∈ [0, 2047] is an integer exponent, shifted by a fixed bias

b = 1023, such that both negative and positive integer powers can be

represented: 2x−b ∈ [2−1023, 2+1024] ≈ [10−308, 10+308];

• m (52 bits) is the mantissa or a fractional part: m ∈ [0, 1), or [1 + m) ∈50

[1, 2).

This model produces an exact represenation of any integer powers of 2, which

have empty mantissa m = 0; the mantissa acts as a truncated linear interpo-

lation between subsequent powers of two, hence allowing any real numbers r

in the range to be represented within an accuracy of approximately 15 decimal55

digits.

2.1. Fast Exponential function

Approximations of the exponential function exploiting the IEEE-754 standard

were developed by Schraudolph [14] and later extended by other researchers

[16]. These formulations target 32-bit numbers, and are not suitable for dou-

ble precision integration of highly stiff problems. However, a recent paper by

Malossi et al. [15] targeted 64-bit numbers and, while coefficients are not given,

employs a McLaurin series expansion, and is included here for completeness.

The exponential function is naturally defined as a series:

exp(x) = ex =

+∞∑
n=1

xn

n!
= 1 + x+

x2

2
+
x3

3!
+ . . . (5)

and this feature is exploited by accurate exponential evaluation methods [17].

However, in [14] it was demonstrated that a fast approximation of the exponen-

tial can be achieved by just manipulating the IEEE-754 number representation

of Equation 4 using simple bit shift and integer algebra operations. First, the
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exponential operation is reduced to a power-of-two operation with a change of

basis:

ex = 2x/ log 2 = 2y; (6)

if number y is represented as an integer and a fractional part, y = yi + yf , then

its machine representation fits its power-of-two exponentiation well:

2y = 2yi2yf = (−1)s2x−b(1 +m). (7)

Sign s = 0 is always positive. The integer term 2yi can be computed by simply

fitting a suitable integer x = 1023 + yi into the exponent part of the floating

point representation, i.e., by left-shifting integer x by 52 positions, and casting

it into the real number representation:

2yi (real64)← 252 · (1023 + yi) (int64); (8)

This operation produces exact results for any numbers being exponentiated that

correspond to integer powers of two, i.e., when computing: elog(2), e2 log(2), e3 log(2), . . ..

The remainder of the floating-point exponentiation deals with the fractional part

yf of Equation 7, and must comply with the following relationship:

2yf = 1 +m, (9)

i.e., one should find what value for the mantissa m ∈ [0, 1) best interpolates the

power-of-two function in the [20, 21) interval. If the mantissa was simply left

unchanged from its value in the number y, one would get a linear interpolation

even with no additional operations, such as employed in [14], just by observing

that m ≡ yf . However, a more general formulation is to use a Taylor series.

The most convenient formulation is to cast Equation 9 as a correction term:

∆(yf ) = 1 +m− 2yf = 1 + yf − 2yf , (10)

as represented in Figure 2. Function ∆ has small values compared to the power

function in the whole interval: ∆ < 0.1, and is always subtracted from the cur-

rent mantissa. Hence, it is legitimate to also subtract the value of ∆ from the

whole number y, since its exponent bits can not be affected.

The overall fast exponential calculation procedure can be summarized as a

change of base and an integer-based assignment:

y ← x/ log 2; (11)

i(int64)← 252(y −∆(yf )) + 1023 · 252.

As the long integer i now contains the IEEE-754 real64 number representation

of ex, it only has to be cast to a real number representation (EQUIVALENCE

statement in FORTRAN 77, transfer function in Modern Fortran, or () cast60

operator in C++).
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Figure 2: Fractional power computation: comparison between linear interpolation of the

mantissa (1 + yf ), exact desired value (2yf ) and Delta function.

2.1.1. Fractional correction formulations.

A first formulation of ∆ as proposed in [15] features a McLaurin series:

∆(yf )|yf∈[0,1) =

+∞∑
n=0

∆(n)(0)

n!
ynf = (1− log 2)yf +

+∞∑
n=2

−(log 2)n

Γ(n+ 1)
ynf . (12)

The series formulation allows ∆ to be computed as an arbitrary degree poly-

nomial, whose coefficients are the series parameters in Equation 12. Figure 3

reports the relative accuracy of fexp(x) = ex this formulation, with polynomial

degrees from 1 to 5. All cases have worsening accuracy the farther downstream

of the series’ center, which creates an asymmetric error profile. One way to

improve on this behavior is to adopt a more general Taylor series, centered in

the midpoint of the mantissa range, i.e., y0 = 1/2:

∆(yf )|yf∈[0,1) =

+∞∑
n=0

∆(n)(1/2)

n!

(
yf −

1

2

)n
(13)

= 1−
√

2 + yf +

+∞∑
n=1

−
√

2(log 2)n

Γ(n+ 1)

(
yf −

1

2

)n
.

This more general series formulation comes at the price of a few additional

floating point operations per evaluation, but provides a more reasonable error

profile, as reported in Figure 4: the error curve is symmetric with respect to

the interpolation interval, and the error peak per same polynomial degree is

significantly smaller. For example, for a degree-3 polynomial, maximum error
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Figure 3: Relative accuracy of approximate exponential with McLaurin series-based fractional

part reconstruction, Eq. 12, degree 1 to 5.

was of 0.56% for the McLaurin expansion, and 0.078% for the Taylor expansion

centered in y0 = 1/2.

Because none of the series-based formulation cares about smoothness of the

exponential curve, i.e., continuity of its successive derivatives, we developed an

additional piecewise polynomial formulation in third- and a fifth-order degree

versions. The idea is that of reconstructing the exponential as a spline curve

[18], where however a unique polynomial for the fractional mantissa correction

applies to all pieces of the function. Modeling the correction funcion of Equation

10 as a piecewise polynomial in the interval y ∈ [0, 1], one has conditions at the

extremes on both the function and its derivatives:

∆(y) = 1 + y − 2y; (14)

∆′(y) = 1− log 2 · 2y;

∆′′(y) = −(log 2)2 · 2y.

Coefficients for the polynomial reconstruction can be obtained by solving a linear

system with conditions applied at the extreme points. The cubic polynomial is

found by enforcing function value and the first derivative (4 total equations); the

fifth-degree polynomial by also adding two equations for the second derivative.

The resulting set of coefficients is reported in Table 2.1.1 for both piecewise

polynomial formulations, with the polynomial expressed as:

∆(y) =

n∑
i=0

siy
i. (15)
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Figure 4: Relative accuracy of approximate exponential with Taylor series-based fractional

part reconstruction, Eq. 13, centered in m0 = 0.5 degree 1 to 5.

Approximation errors reported in Figure 5 show that smoother error behavior

Table 1: Coefficients for piecewise polynomial interpolation of the mantissa ∆ correction

function of Equation 10, ∆(x) ≈
∑n

i=0 six
i

Coefficient Cubic (n = 3) Quintic (n = 5)

s5 - -1.90188191959304e-3

s4 - -9.01146535969578e-3

s3 -7.6167541742324804e-2 -5.57129652016652e-2

s2 -0.23141283591588344 -2.40226506959101e-1

s1 0.30758037765820823 3.06852819440055e-1

s0 0 0

is achieved by the spline representations thanks to continuity being enforced not

only at the function but also at its first (and second, if n = 5) derivative.

The computational performance of both the spline and the Taylor series-based

formulations is reported in Figure 6. Here, CPU time monitoring was performed

over a set of 108 statistically-sampled fexp(x) evaluations for x ∈ [0, 1]. In or-

der to circumvent possible compiler optimizations, each exponential was also

summed to a cumulative sum variable, whose additional overhead was also eval-

uated separately and then removed from the measure. The application was com-

piled with a GCC/gfortran 6.2.0 compiler on a Microsoft Windows machine

equipped with an Intel i7-4770K quad-core processor. CPU time measurements

include advanced compiler optimization flags (-O3) as well as CPU architecture-

8



0 ln(2) 2ln(2) 3ln(2) 4ln(2)
10

−15

10
−10

10
−5

10
0

x

fexp(x) relative error

 

 

spline, n=3
spline, n=5

Taylor, n=3
Taylor, n=5

Figure 5: Relative accuracy of approximate exponential with third-degree and fifth-degree

piecewise polynomial fractional part reconstruction, Equation 15, compared with the similar

degree Taylor expansions of Equation 13.

specific tuning (-march=core-avx2). Only slight improvements were achieved

by architecture-specific tuning against the ‘standard’ optimization flags; they al-

lowed some CPU time reduction especially at the most demanding fifth-degree

formulations, achieving computational time reductions always greater than 85%

for any formulations, most likely thanks to the avx2 set of instructions. These

include FMA, or Fused Multiply-Add, where two floating-point operations (mul-

tiplication and addition) of the type a+(b*c) can be performed within the same

CPU clock cycle, which well suit Horner’s rule for polynomial evaluation adopted

in the current implementation:

P (x) =

n∑
i=0

aix
i = a0 + x (a1 + x (a2 + x (a3 + . . .))) . (16)

Furthermore, each Taylor series implementation was slower than its similar-

degree spline version, due to the additional operations associated with the non-

zero series center.65

2.2. Fast Logarithm function

A fast approximate method for the natural logarithm function log(x) was

developed based on the same template as for the exponential function; the inter-

polation method for the being restricted to the piecewise polynomial functions

of the spline type because of the benefits highlighted in the previous section. In

case of a natural logarithm operation, the opposite change of base happens:

loge(x) = loge(2) · log2(x); (17)
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Figure 6: Relative performance of approximate exponential function fexp(x) with piecewise

polynomial or Taylor series based fractional part reconstruction. Compiled with GCC/gfortran

6.2.0 for an Intel i7-4770K CPU. Compiler optimization flags: (left) fast -O3 only, (right)

with CPU architecture tuning, -O3 -march=core-avx2.

hence, the object of the fast approximation is the base-2 logarithm of the input

variable y. Using the same IEEE-754 representation trick as from Equation 7,

the logarithm can be split into a sum of an integer part and a fractional part

log2(y) = log2
(
2x−b(1 +m)

)
(18)

= (x− b) + log2(1 +m),

i.e., the integer part (x− b) is already stored in the real number as its exponent

x, while the fractional part stored in the mantissa is again subject to modeling.

A spline interpolation approach similar to that of Equation 14 was used, whose

coefficients were found by solving a linear system with the following function

and derivative conditions:

∆(m) = log2(1 +m); (19)

∆′(m) = (log 2 · (1 +m))
−1

;

∆′′(m) = −
(
log 2 · (1 +m)2

)−1
.

The polynomial coefficients for cubic and fifth-degree spline reconstruction of

the Delta function in Equation 19 are reported in Table 2. Despite the lower

computational complexity of the logarithm function, the amount of speed-up

achieved by the fast implementation is more significant than for the exponen-70

tial, as reported in Figure 7; also the CPU-optimized compilation showed a
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Table 2: Coefficients for piecewise polynomial interpolation of the mantissa ∆ correction

function of Equation 19 (fast log), ∆(x) ≈
∑n

i=0 six
i

Coefficient Cubic (n = 3) Quintic (n = 5)

s5 - 4.88829563330264e-2

s4 - -2.12375830888126e-1

s3 0.164042561333445 4.42145354110618e-1

s2 -0.606737602222408 -7.21347520444482e-1

s1 1.442695040888963 1.44269504088896e+0

s0 0 0

greater increase in performance, with maximum speed-ups of more than 95%

for any of the formulations. Regarding the relative accuracy reported in Figure

8, the mantissa interpolation function now acts between periods of x which are

integer powers of 2. The same smooth error pattern produced by the fast spline75

exponential was seen also for the spline logarithm function; relative errors being

slightly smaller in the region close to x = 1 where the logarithm becomes zero;

still consistently uniform across the whole variable range. Peak relative errors

were of 1.4% for the cubic version, and 0.11% for the fifth-degree formulation.

Modern Fortran implementation of the fifth-degree spline fast approximations80

of the exponential and logarithm functions are reported in Appendix A.

2.3. Fast interpolation with tabulated data

An alternate approach to speeding up the evaluation of derived functions

involving exponentials and logarithms is to totally replace function evaluation

with a storage/retrieval technique [2]. The function is sampled in a well-defined85

variable range at select, equally spaced points; the table is then queried whenever

function values are requested. The number of table points needed per function

evaluation depends on the desired interpolation accuracy. This approach has

the advantage of replacing on-the-fly computation with stored data: the user

can store more complex functions that involve multiple operations, hence sav-90

ing further CPU time; furthermore, by sharing table range and sampling points

among multiple functions, the procedure can be fully vectorized hence allowing

further CPU time savings when multiple functions are involved – for instance, in

the case of multiple reaction rates in a mechanism. However, this comes at the

price of a non-negligible memory footprint; plus, the accuracy of the function95

reconstruction depends on the user’s choice of a suitable sampling step.
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wise polynomial fractional part reconstruction. Compiled with GCC/gfortran 6.2.0 for an

Intel i7-4770K CPU. Compiler optimization flags: (left) fast -O3 only, (right) with CPU ar-

chitecture tuning, -O3 -march=core-avx2.
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2.3.1. Fast Piecewise Interpolation.

Consider a vector function f(x) : R → Rn that maps a single variable

x ∈ [xmin, xmax] to values in an n− dimensional space. A table T is a set of

sampled function vectors {f(x1 ≡ xmin), f(x2), . . . , f(xns
≡ xmax)} at a number

ns of equally-spaced sampling points, with step-size ∆x = xi − xi−1. A fast

interpolation method was developed for tabulated vector functions such as de-

fined. A schematic of this configuration is reproduced in Figure 9. Because all

tabulated values are equally spaced in the unknown variable space, their actual

range can be replaced with an integer range with a linear mapping function.

So, first, the position of the unknown x is located within the tabulation interval

using normalized coordinates:

χ = (x− xmin) /∆x; (20)

I0 = bχc ;

r = {χ} = χ− I0;

where χ is the normalized real coordinate, or number of steps from the first

mapped point; I0 is its floor function [19], or greatest integer smaller than

χ; r is the fractional part assumed by χ within its containing interval. Point

χ is hence included in the [I0, I0 + 1) interval, identified by the left bound

I0, which can assume integer values betweeh 1 and ns − 1. We developed a

piecewise polynomial basis functions that shifts the left bound to the origin

in the normalized coordinate axis, so the interpolation point is only identified

by coordinate r and lies in the [0, 1) range. The successive neighboring points

in table T are identified by their relative position, i.e., by normalized positive

(2, 3, 4, . . .) or negative (−2,−3, . . .) coordinates. We want the basis function to

be a polynomial of arbitrary order nP :

P (r) =

nP∑
i=0

pir
i. (21)

Hence, coefficients pi are obtained by solving a linear system to equal the polyno-

mial formulation of Eq. 21 with a necessary number of tabulated data points to

the current interval. In the simple case of linear interpolation, P1(r) = p1r+p0,

the two interval extremes will be enough:[
0 1

1 1

]
·
[
p1
p0

]
=

[
y(0)

y(1)

]
. (22)

In the general case of a higher-degree polynomial, np + 1 mapped data points

are needed in order for the linear system to be solved. Hence, one must choose

an appropriate number of neighboring data points on the left- and right-hand

side of interval [0, 1]. A global set of np + 1 consecutive datapoint locations
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[l, l+1, . . . , 0, 1, . . . , l+np] is centered around the [0,1] interval for any piecewise

polynomial degree if the leftmost neighbor index is chosen as l = −[np/2−1] ∈ Z,

where [] denotes rounding to the nearest integer. The arbitrary-degree linear

system to be solved for coefficients pi in Equation 21 has the following form:

lnp lnp−1 . . . l 1

(l + 1)np (l + 1)np−1 . . . (l + 1) 1
...

... . . .
...

...

0 0 . . . 0 1

1 1 . . . 1 1
...

... . . .
...

...

(l + np)
n
p (l + np)

np−1 . . . (l + np) 1


·



pnp

pnp−1
pnp−2

...

...

...

p0


=



y(l)

y(l + 1)
...

y(0)

y(1)
...

y(l + np)


. (23)

Since the table usually contains large array of values y = f(x) per tabulated

data point, the polynomial calculation was grouped by tabulated data points

y(l + i) instead of by coefficient pi, to achieve a fully vectorized computation.

For example, for a fourth-degree polynomial, one has

P4(r) =

(
5

120
r4 +

5

60
r3 − 5

120
r2 +

5

60
r

)
· y(−2) (24)

+

(
−1

6
r4 +

1

6
r3 +

2

3
r2 − 2

3
r

)
· y(−1)

+

(
1

4
r4 − 5

4
r2 + 1

)
· y(0)

+

(
−1

6
r4 − 1

6
r3 +

2

3
r2 +

2

3
r

)
· y(+1)

+

(
5

120
r4 +

5

60
r3 − 5

120
r2 − 5

60
r

)
· y(+2);

By differentiating the polynomial formulation of Equation 21, one has a fully

vectorized method to estimate both polynomial function reconstruction and any

of its derivatives with the same set of vectorized table retrievals:

∂P

∂x
=
∂P

∂r

∂r

∂x
=

1

∆x

∂P

∂r
; (25)

∂2P

∂x2
=
∂2P

∂r2

(
∂r

∂x

)2

=
1

(∆x)2
∂2P

∂r2
,

since ∂r/∂x = 1/∆x is a constant. By employing the proposed tabulation and

polynomial interpolation approach, several advantages versus traditional piece-100

wise polynomial reconstruction functions (spline, PCHIP) could be achieved:

• only one datum, i.e., the function value, is stored per sampling point:

no derivatives or other pre-computed polynomial coefficients are needed.

Hence, smallest memory footprint possible per sampling point is achieved;

14



December 15th, 2016

Optimal-degree interpolation

-2           -1            0    r     1           2            3

f1

f2

f3

fn

Figure 9: Vector function tabulation at equally-spaced points.

• Note that the same tabulated data are retrieved for both function and105

derivative. This increases the overall computational efficiency in case both

function and its derivatives are needed at the same time, plus, it saves

storage from the derivative formulations which would otherwise have to

be tabulated as well;

• The linear system of Equation 23 produces universally-valid results per110

same polynomial degree, which can be hard-wired into the code as highly

efficient routines. The implementation in the current work features piece-

wise polynomials and their derivatives up to degree np = 6.

• Both table retrievals and the interpolation functions are fully vectorized,

which makes the method particularly suitable to take advantage of modern115

CPU architectures;

• The problem of oscillating interpolants is minimized when dealing with

functions such as exponentials, which span several tens of orders of mag-

nitude. In fact, when using piecewise polynomial methods based on solving

linear systems such as spline and PCHIP, truncation errors occur, which120

can cause severe oscillations in the interpolant. This issue is avoided since

the piecewise interpolant is computed based on a subset of neighbor tab-

ulated points, not by solving systems over the whole sampled set.

3. Results and Discussion

The computational performance of the proposed methods to speed up the125

evaluation of exponential and logarithm functions was assessed for ignition delay
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calculations of hydrocarbon fuels using the SpeedCHEM package [2, 11]. The pack-

age, written in modern Fortran, solves zero-dimensional conservation equations

of mass and energy in homogeneous reactive gas-phase environments, reported

in Equation 1. Computational performance of the SpeedCHEM package scales lin-130

early with reaction mechanism size, thanks to vectorized property handling, a

fully analytical Jacobian implementation of the chemical kinetics system [2], and

usage of sparse matrix computation for both the Jacobian construction and its

solution [11]; the package, available online open-source, has been successfully

employed for zero-dimensional reactor modeling and for detailed multidimen-135

sional combustion simulations [20–24].

3.1. Homogeneous reactors.

The study featured 11 reaction mechanisms of sizes ranging from 10 to

7171 species, as reported in Figure 10. For each reaction mechanism, igni-140

tion delay time integration problems were simulated for 31 initial reactor con-

figurations of interest to combustion modeling: initial air-fuel mixture equiv-

alence ratio φ0 = 0.5, 1.0, 2.0; reactor pressure p0 = 10, 40bar; temperature

T0 = 750, 925, 1100, 1275, 1450K. The initial charge was initialized as a fuel-air

mixture of given equivalence ratio of standard air (O2/N2 or O2/N2/Ar where145

available) with a mechanism-specific fuel surrogate, whose mass composition is

reported together with other mechanism details in Table 3.1.

The study focused on the global integration performance of introducing approx-

imate formulations for exponential- and logarithm-based kinetics functions; so,

solver settings were maintained constant for all simulations. These featured150

usage of the sparse LSODE solver [25], with relative and absolute integration

tolerances RTOL = 1.0e-04 and ATOL = 1.0e-15, suitable for multidimensional

simulations; sparse analytical Jacobian formulation of the chemical kinetics sys-

tem, and linear system solution employing a direct sparse solver; i.e., neither

iterative solutions nor preconditioning of the Jacobian matrix were activated.155

The fast exponential/logarithm approximation applied to several temperature-

dependent functions in the reaction mechanism, whose baseline computational

cost is reported per element in Figure 11. Figure 11 highlights that costs as-

sociated with some of the most relevant temperature-dependent functions are

essentially independent of mechanism size, suggesting that all dense vector func-

tions that define the system’s state and reactivity do not benefit from mechanism

sparsity. k∞ represents Arrhenius reaction rate at the high-pressure limit:

k∞,j(T ) = AjT
bje−

Ej
RT , (26)

with size (nr), already subject to investigation for speed up in [1]; cp is the

(ns) species’ constant-pressure specific heat (J/mol/K), defined according to

16



JANAF’s 7-coefficient polynomial format:

cp,i(T ) = R
(
ai + biT + ciT

2 + diT
3 + eiT

4
)

; (27)

Keq,c, of size (nr,eq) is the concentration-based equilibrium constant. This con-

stant defines the ratio between forward and reverse reaction rates, and applies

to all nr,eq equilibrium-based reversible reactions in the mechanisms. The equi-

librium ratio applies to all reactions according to the theory, but it is common

practice in mechanism development to override it with a user-defined reverse

reaction rate in Arrhenius form (REV), to better match experimental data, so in

general nr,eq < nr:

Keq,c,j(T ) = exp
(
−∆g0j

) [patm
RT

]∑ns
i=1 ν

′′
j,i−ν

′
j,i

,

where ∆g0j =
∑
i=1,ns

(
ν′′j,i − ν′j,i

)
g0i is the reaction’s change in non-dimensional

Gibbs free energy g0i (T ) between reactants and products. Troe’s centering fac-

tor log10Fcent [26], with size (nTROE), is the temperature-dependent part of the

pressure weighting parameter in Troe-formulated pressure dependent reactions

[2]

Fcent,j = (1− aj) exp

(
− T

T3,j

)
+ aj exp

(
− T

T1,j

)
+ exp

(
−T2,j

T

)
; (28)

in Figure 11, these temperature-dependent quantities are also compared to bulk

CPU times for the evaluation of species concentration rates of change dω/dt,

the Jacobian matrix J (ns + 1 x ns + 1), and its sparse LU solve.
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Figure 10: Range of reaction mechanism sizes employed in the current study.

The combined effects of the fast exponential/logarithm approximations of sec-

tion 2.1 and 2.2 are reported in Figures 13 to 16 for classes of mechanism size:160

tiny (10-29 species), CFD-size (128-160 species), detailed (654-1034 species),

comprehensive (2878-7171 species). In the plots, each line represents results

achieved with a same exp/log formulation method, while temperature function

tabulation/interpolation methods are identified along the x-axis. For the fast ex-

ponential approximation, Taylor series with n = 1, 3, 5 and spline interpolation165

with n = 3, 5 were tested. For tabulation/interpolation, the developed piecewise

polynomial method was tested at all orders from 1 to 5, plus, an ‘optimal-degree’

version was added which chooses the requested interpolation order at each tem-

perature interval based on a relative accuracy constraint ε < 10−6 versus the

exact value which is computed and stored during table initialization. Further-170

more, standard global interpolation methods including cubic spline, piecewise

cubic hermite polynomial (PCHIP), and Akima spline were included. These

latter state-of-the-art methods still produce a piecewise representation of the

function, but compute their coefficients a priori by solving a linear system over

the whole tabulated dataset instead of inferring them on-the-fly from tabulated175

data only, such as in the current method.

All plots report relative quantities of the baseline case, which uses double preci-

sion intrinsic functions as well as no tabulation/interpolation approaches. Per-

formance was evaluated by total CPU time, total number of integration steps,180

as well as average relative error on the predicted IDTs over the 31 conditions

simulated per case. Since most CPU time during the integration is spent on

sparse solver machinery [11], global advantage was expected to be not as large
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Figure 11: CPU time cost (per element) for several kinetics functions, as a function of reaction

mechanism size.

as for the single exponential function evaluation. Thus, the focus of this study

was to assess how much total speed-up is achieveable with the proposed approx-185

imate formulations, even with an already well-tuned platform.

All cases showed that, regardless of mechanism size, some time advantage was

seen for any configuration that led to successful ODE integration. The largest

CPU time reduction (down to 18% of the baseline) was seen for the 128-species

multiChem mechanism. A still remarkable least amount of reduction, down190

to 37% was seen for the smallest 10-species mechanism where vectorization of

CPU operations might not be well exploited due to the small size. The configu-

rations that produced optimal CPU time results also showed a similar number

of integration steps as the baseline case, sometimes even reducing it by a few

percent points. This indicates that the smoothly interpolated functions can have195

a stabilizing effect on the solver by providing smoother temperature-dependent

function/derivative relationships, since the system’s stiffness is unchanged. Both

CPU time and average error have clearly defined patterns with the methods’

order. For example, it is seen that linear interpolation is insufficient and leads

to several integrator failures. The same observation applies to standard inter-200

polation methods (spline, PCHIP, Akima): they lead to failures or severe per-

formance losses at any scenarios. For them, extreme function ranges that can

span tens of orders of magnitude between 300K and 3000K, can cause severe

ill-conditioning of the linear system being used to compute their coefficients,

causing oscillatory behavior.205

The amount of speed-up is maximized by combining fast exponential and data

tabulation/interpolation even if good speed-ups can still be achieved as well also
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Figure 12: SpeedCHEM memory footprint for reactor calculations with the reaction mechanisms

of Table 3.1. (blue) fast exponential and logarithm functions, no data tabulation; (black)

piecewise polynomial method of section 2.3; (red) global piecewise polynomial interpolation

(cubic spline/Hermite). All tabulated data have temperature-dependent function tabulation

with ∆T = 10K in the [10K, 300K] range.

when no tabulation is applied. In this latter case, some sensitivity to the selected

approximated method appears. The quintic spline approach outperforming the

others in accuracy, while the cubic spline is best in global CPU time.210

When faster results are obtained adding tabulation/interpolation, a larger mem-

ory footprint is needed, as reported in Figure 12. Here, SpeedCHEM’s total RAM

footprint is plotted versus mechanism size for the solver configuration employed

in the stud,y i.e., it includes the reaction mechanism representation including

storage for the sparse algebra manipulations, as well as the ODE solver’s working215

arrays. No additional storage is required when employing fast exponentiation

only. In this case, the total memory footprint is a negligible amount of RAM

for mechanisms up to medium size (≈ 1 to 10MB), and has a modest 44MB for

the 7171-species mechanism. Tabulation with ∆T = 10K has instead a notice-

able effect on RAM used by the program, and can increase it by approximately220

one order of magnitude. For the piecewise polynomial interpolation developed,

only tabulated data points are needed. For spline, PCHIP and Akima inter-

polation, additional coefficients are needed per tabulated datapoint, increasing

RAM demand even further, up to more than one gigabyte for the largest mech-

anism. For mechanisms of about 100-200 species typically used in CFD, the225

piecewise polynomial approach developed in this study has modest RAM needs

of approximately 10MB, which makes it suitable for combustion applications in

combination with fast exponentiation to maximize CPU time performance.
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Figure 13: Performance and accuracy comparison of mechanisms of tiny size against fexp/flog

(intrinsic, spline, Taylor series) and tabulation/interpolation formulations (piecewise formu-

lation, global cubic spline/Hermite). (left) global integration CPU time ratio versus baseline

case; (center) number of integration steps ratio; (right) average relative error on ignition delay

time.

Figure 14: Performance and accuracy comparison of mechanisms of size tailored for CFD

calculations against fexp/flog (intrinsic, spline, Taylor series) and tabulation/interpolation

formulations (piecewise formulation, global cubic spline/Hermite). (left) global integration

CPU time ratio versus baseline case; (center) number of integration steps ratio; (right) average

relative error on ignition delay time.
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Figure 15: Performance and accuracy comparison of detailed mechanisms against fexp/flog

(intrinsic, spline, Taylor series) and tabulation/interpolation formulations (piecewise formu-

lation, global cubic spline/Hermite). (left) global integration CPU time ratio versus baseline

case; (center) number of integration steps ratio; (right) average relative error on ignition delay

time.

Figure 16: Performance and accuracy comparison of large comprehensive mechanisms against

fexp/flog (intrinsic, spline, Taylor series) and tabulation/interpolation formulations (piece-

wise formulation, global cubic spline/Hermite). (left) global integration CPU time ratio versus

baseline case; (center) number of integration steps ratio; (right) average relative error on ig-

nition delay time.
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baseline setup (intrinsic exp()/log(), no storage/retrieval.

Figure 17 summarizes performance and accuracy with an optimal choice of meth-

ods. This setup features fast exp() and log() functions with quintic spline for-230

mulation, and storage/retrieval with optimal-degree piecewise polynomial inter-

polation at ε = 10−6. This configuration succeeded at all IDT cases and for all

mechanisms. By introducing an approximation in the exponential functions one

would expect a trade-off between improved CPU efficiency due to faster evalua-

tion of those functions, and additional overhead due to lesser simulation stabil-235

ity, perhaps leading to an increase in number of integration timesteps. However,

compared with the baseline case, which employs intrinsic functions and no stor-

age/retrieval, consistent ODE solver performance was observed, with needed

integration steps ranging from −1.6% to +1.0%, except for two mechanisms

([33],[35]) whose integration used up to +21.5% more steps than the baseline.240

Overall integration times were smoothly lower than the baseline case for all

mechanism, ranging from a speed-up of −46.9% for the largest mechanism, to

a peak of −82.3% CPU time for the multiChem mechanism [31]. Performance

improvement worsens for very large mechanisms where sparse linear algebra

overhead dominates over the whole integration time. Integral relative error on245

predicted ignition delays was well within acceptable accuracy limits set by the

ODE solver tolerance, RTOL = 1.0e-4, as also highlighted in Figure 18: instan-

taneous temperature and species mass fraction profiles computed using either

temperature function tabulation/retrieval or fast exp()/log() calculation are

virtually undistinguishable from the exact ones.250
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Figure 19: Relative error from tabulation/5th-degree interpolation procedure for (left) forward

reaction rates, (right) equilibrium constants.

3.2. Variable range sampling.

The proposed piecewise interpolation algorithm only stores function values

at the sampled points, and does not require to pre-compute and store addi-

tional parameters per point. Hence, the accuracy of the resulting interpolating

functions can only be adjusted by choosing a suitable sampling interval. For255

combustion chemical kinetics applications, a reasonable total temperature range

covers approximately 300K to 3000K. Within this range, functions describing

thermodynamic properties ( cp, cv, etc.) typically vary less than a few times; rel-

ative errors due to interpolation were observed to be well within double-precision

accuracy for several choices of the temperature sampling interval. Kinetics func-260

tions involving exponentials vary by several tens of orders of magnitude instead:

making the choice of a suitable sampling step critical to their accuracy. Figure

19 reports the relative error of interpolated kinetics functions (forward reaction

rates, kinf , and equilibrium constant, Kc,eq) for three sampling step values of

10, 50 and 100K, and 5th-degree polynomial interpolation. Each line represents265

the average error over the whole set of reactions, while each shaded colored band

represents the range between 25th and 75th percentiles of the relative error band

at that sampling step size.

3.3. ODE solver convergence features.

Tabulation was not seen to destabilize ODE integration convergence at dif-270

ferent solver tolerances, as reported in Figure 20, where the set of homogeneous

reactor conditions tested was employed to measure the ratio between the number

of integration steps needed when employing tabulated temperature-dependent

functions versus their exact computation:

• With a temperature sampling stepsize of 10K or less, essentially the same275

number of steps as from the exact solution was observed. When larger
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exact analytical computations, at different ODE solver tolerances: RTOL=1e-2, 1e-4, 1e-6,

1e-8, and ATOL=1e-10, 1e-15, 1e-18, 1e-20, respectively.

sampling stepsizes ( 50 or 100K) were employed, the number of integra-

tion steps increased by about an order of magnitude even for very large

tolerances.

• In either scenario, tabulation accuracy did not dramatically affect the280

number of steps across the tolerance range, which had more or less always

the same ratio with the number of steps when using the exact functions.

3.4. Engine calculations.

Further validation of the proposed approach was carried out against combus-

tion CFD calculations in internal combustion engines, where a broad range of285

composition-pressure-temperature variables is experienced, which, if not appro-

priately accurate, could potentially lead to stability issues. A 2D HCCI engine

combustion simulation with a two-dimensional sector mesh was performed em-

ploying the FRESCO platform, a combustion CFD code being developed at the

University of Wisconsin.290

The HCCI experiments by Dempsey et al. [36] were modeled, using a PRF50

fuel, employing a 2D computational mesh with 3096 cells at bottom dead center

as described in[21]. Three PRF mechanisms from Table 3.1 were employed, from

47 to 1034 species. Chemistry was integrated using RTOL=1e-4 and ATOL=1e-15.

The comparison between exact functions and tabulation with fast exponenti-295

ation in Figure 21 highlighted very good consistency for both thermodynamic
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Figure 21: Comparison between analytical kinetics functions and tabulation/polynomial in-

terpolation with fast exp()/log(): 2D HCCI combustion, with reaction mechanism sizes

ns = 47, 86, 1034 (top to bottom).

quantities and instantaneous species mass fractions, regardless of reaction mech-

anism size. The speedup achieved by tabulation and fast exponentiation was of

1.70× for ns = 47, 1.81× for ns = 86, and 1.33× for ns = 1034, respectively.

A three-dimensional spray combustion simulation in a diesel engine was run as300

well. The simulation modeled diesel combustion in the Sandia National Labo-

ratories 1.9L, light-duty optical diesel engine, operating a single-pulse injection,

conventional diesel combustion condition (CDC9) at 9bar IMEP load, and 19.7%

O2 molar fraction in the intake charge. Details of the engine and its operating

conditions can be found in [37]. The injected fuel was a binary Diesel Pri-305

mary Reference Fuel mixture DPRF58, made of 58% heptamethylnonane and

42% n-hexadecane, injected mass 26.7 mg. Its combustion was simulated using

the ERC multiChem mechanism (ns=229 species) [38], using direct mapping of

the liquid-phase to the gas-phase species. Figure 22 reports a comparison of

predicted bulk in-cylinder quantities, while local temperature and NOx mass310

fraction contours are reproduced in Figure 23, at a vertical cut-plane through

the injection axis. The comparison shows satisfactory reproducibility of the

results even in a complex CFD framework, not only at the scale of bulk quanti-

ties, but also locally within the domain. The tabulation approach reduced the

amount of time spent on chemistry calculations in the simulation from 47.9 to315

29.2 hours on 16 CPUs, corresponding to a speed up of 1.65×.
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Figure 22: Predicted in-cylinder temperature, pressure, heat released and NOx mass fraction

in the SNL 1.9L engine, CDC9 operating condition. Comparison between analytical kinetics

functions with exp() intrinsics (red), or tabulation (∆T = 10K) with 5th-degree polynomial

interpolation and quantic spline fast exp()/log() (blue).

Figure 23: Predicted (top) internal energy U and (bottom) NOx mass fr. fields in the SNL

1.9L engine, CDC9 operating condition, CA = 11degaTDC, at vertical cut-planes through

the injection axis within the combustion chamber. Comparison between analytical kinetics

functions with exp() intrinsics (left), or tabulation (∆T = 10K) with 5th-degree polynomial

interpolation and quantic spline fast exp()/log().
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4. Concluding remarks

We developed two fast approximation approaches for costly combustion ki-

netics quantities involving the exponential and logarithm functions. The first

approach developed fast exp(x) and log(x) functions in 64-bit precision ex-320

ploiting low-level operations in the number’s bit representation. The second

approach developed a piecewise polynomial formulation for equally-spaced tab-

ulated points, which achieves speed up by combined storage/retrieval of tabu-

lated data with a fast and data-independent interpolation method of arbitrary

degree. The two approaches were tested, both separately and combined, for325

solving a set of ignition delay time integration problems with the SpeedCHEM

package and their performance was assessed in terms of global speed-up, accu-

racy and solver stability. Based on the analysis, the following conclusions could

be drawn:

• All fast exponential and logarithm functions provided approximately one-330

order-of-magnitude speed-ups versus the respective accurate intrinsics. An

interpolation order of at least n = 3 was needed for robust chemistry ODE

integration. The spline formulations outperformed the Taylor series ones

in both evaluation time and chemistry ODE performance.

• Fast exponentiation could alone achieve global chemistry solution speed-335

ups larger than −60% for CFD-sized mechanisms where sparse linear

algebra is already demanding. However, the best performance was al-

ways achieved when fast exponentiation was coupled with tabulation of

temperature-dependent functions with piecewise polynomial reconstruc-

tion of degree n ≥ 5; here, speed-ups greater than −80% were achieved340

for CFD-sized mechanisms.

• The tabulation/interpolation approach for costly temperature dependent

functions allowed significant speed-ups thanks to storage/retrieval; plus

use of a fully vectorized and function-independent piecewise polynomial

formulation that applies the same few scalar coefficients to vector functions345

of arbitrarily large size.

• The piecewise polynomial method developed in this study outperformed

standard piecewise interpolation methods in two aspects: 1) smaller mem-

ory footprint – no derivative data has to be stored in addition to the

tabulated function values; 2) better error performance: the polynomial350

coefficients are not solved from a global linear system, such as in other

piecewise polynomial methods, hence avoiding ill-conditioning when the

function spans several orders of magnitude, such as with exponentials.

A modern Fortran implementation of the spline versions of the fast Exponential

and Logarithm functions developed in this study is reported in Appendix A.355
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Appendix A. Modern Fortran implementations360

! Fast exp(x) - fifth-degree spline

elemental real(real64) function fexp_quintic(x) result(exp_x)

use iso_fortran_env, only: real64,int64

implicit none

real(real64), intent(in) :: x365

! Local variables and parameters

integer(int64), parameter :: mantissa = 2_int64**52

integer(int64), parameter :: bias = 1023_int64

integer(int64), parameter :: ishift = mantissa*bias370

real(real64), parameter :: log2 = log(2.0_real64)

real(real64), parameter :: s5(5)= [-1.90188191959304e-3_real64,&

-9.01146535969578e-3_real64,-5.57129652016652e-2_real64,&

-2.40226506959101e-1_real64, 3.06852819440055e-1_real64]

real(real64) :: y,yf375

integer(int64) :: i8

y = x*log2 ! Change of base: e^x -> 2^y

yf = y-floor(y) ! Compute fractional part

y = y-((((s5(1)*yf+s5(2))*yf+s5(3))*yf+s5(4))*yf+s5(5))*yf ! Add Delta380

i8 = mantissa*y + ishift ! Perform Integer operation

exp_x = transfer(i8,exp_x) ! Cast to real

end function fexp_quintic

! Fast log(x) - fifth-degree spline385

elemental real(real64) function flog_quintic(x) result(log_x)

use iso_fortran_env, only: real64,int64

implicit none

real(real64), intent(in) :: x

390

! Local variables and parameters

real(real64) :: yi,yf

integer(int64) :: i8

integer(int64), parameter :: mantissa = not(shiftl(2047_int64,52))
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integer(int64), parameter :: mantissa_left = 2_int64**52395

integer(int64), parameter :: bias = 1023_int64

integer(int64), parameter :: ishift = mantissa_left*bias

real(real64), parameter :: log2 = log(2.0_real64)

real(real64), parameter :: s5(5)= [ 1.44269504088896e+0_real64,&

-7.21347520444482e-1_real64, 4.42145354110618e-1_real64,&400

-2.12375830888126e-1_real64, 4.88829563330264e-2_real64]

! Extract exponent

i8 = transfer(x,i8)

yi = shiftr(i8,52)-bias405

! Extract mantissa

yf = transfer(iand(i8,mantissa)+ishift,yf)-1.0_real64

! Apply quintic polynomial

yf = yf*(s5(1)+yf*(s5(2)+yf*(s5(3)+yf*(s5(4)+yf*s5(5)))))

! Change of base: log_2(x) -> log_e(x) = log2*log_2(x)410

log_x = (yf+yi)*log2

end function flog_quintic
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