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Motivation and challengesMotivation and challenges
 New combustion concepts (HCCI/PCCI, RCCI) show impressive improvements in 

conversion efficiencyy
 ICE indicated efficiency >50%
 strong dependency on fuel chemistry and local mixture reactivity

 i l / h l i l b ti  d l  l k f l ti i  d lli simple/phenomenological combustion models lack of resolution in modelling:
 the whole range of operating conditions 

of practical systems
 presence of exhaust gases in the mixture Sizes of biofuels mechanisms
 presence of exhaust gases in the mixture
 simultaneous operation with multiple fuels

 Practical reaction mechanisms for
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 Chemical Kinetics in ICE CFD

 Usually part of an operator-splitting scheme
 Each cell is treated as an adiabatic well-stirred 

reactor
◦ embarassingly parallel problem

KineticsMechanism

g y p p
◦ very stiff IVP
◦ only overall changes in species mass fractions and 

internal energy are passed to the flow solver

 Approach to the Approach to the 

internal energy are passed to the flow solver

Fluid
Flow

solverGrid

ODE 
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pp
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problem

pp
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Sparse Analytical Jacobian approach
 Chemical Kinetics is a sparse problem => Jacobian matrix

ERC n-heptane LLNL n-heptane LLNL PRF
29 x 52 160 x 1540 1034 x 4236

Mechanism n n non-zero sparsity  Usually not more than 3 4 Mechanism ns nr non zero sparsity
1. ERC n-heptane 29 52 412 54.2%
2. LLNL n-heptane 160 1540 3570 86.2%
3 LLNL PRF 1034 4236 22551 97 9%

 Usually, not more than 3-4 
species per reaction

 Significant even at small
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3. LLNL PRF 1034 4236 22551 97.9%
4. LLNL MD 2878 8555 166703 99.4% mechanisms



Jacobian matrix sparsity effectsJ p y
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Analytical Jacobian
Finite difference Jacobian

 Reduce scaling of the computational demand for evaluating the Jacobian 
matrix: ns

2 => ns

 Reduce matrix storage requirements: ns
2 => ns

 Scaling of the costs for matrix factorization: ns
3 => ns

I  ( d i )  f N ’  i i  h d
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 Improve (quadratic) convergence of Newton’s iterative method



Tabulation of temperature-dependent
quantitiesquantities

 Interpolation errors can be very low e g  at degree 4 interpolation Interpolation errors can be very low e.g. at degree-4 interpolation

 Fixed temperature steps make storage simpler, data contiguous, and interpolating 
polynomial coefficients simple to compute

2012-01-1974

 CPU time reduction of more than 1 order of magnitude



Tabulation of temperature-dependent
quantities II effect on total CPU timequantities II – effect on total CPU time

6%
CPU time efforts, LLNL n-heptane mech.

 

50%
44%44%

 numerical factorization
ODE function and Jacobian
solver-related

 The relative importance of tabulation decreases at increasing mechanism dimensions

 Anyway, it accounts for about -50% CPU time in comparison with the non-tabulated case

 At large reaction mechanisms, the solution of the linear system accounts for almost 50% time



Results: constant-volume reactors
 18 ignition cases for each mechanism

 p0 = 2.0, 20.0 bar
T  750  1000  1500 K
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Results: constant-volume reactors II
 Almost linear speedup in comparison with a reference code that uses FD 
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 At typical mechanism dimension, the speedup is of almost one order of
magnitude

 Nota Bene: two different solvers were used!
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 Nota Bene: two different solvers were used!



Results: constant-volume reactors III
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absolute tolerance 10-13 10-13 10-13 10-13

* All cases run on a 32-bit 3.0GHz Pentium IV machine with 1GB RAM 



Different solvers do have different
performanceperformance…
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integrator steps 1 9
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 All of the solvers have been implemented sparse solution of All of the solvers have been implemented sparse solution of
linear systems (Yale sparse matrix package, 1983)

 The same truncation error handling has different meaningsg g
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… and stricter tolerances do not always
mean better resultsmean better results
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 LLNL n-heptane mech

 SpeedCHEM + LSODES solver

 Reference solution has RTOL = 1d 15 Reference solution has RTOL = 1d-15



Modelling of a Heavy-Duty Diesel Engineg y y g

Caterpillar SCOTE 3401 Engine details
Engine type direct injection diesel

 Extensive experimental measurements
by Hardy, UW-ERC (SAE 2006-01-

Engine type direct-injection diesel

Number of cylinders 1

Valves per cylinder 4

Bore x Stroke [mm] 137 2 x 165 1 E i ti diti

0026)

Bore x Stroke [mm] 137.2 x 165.1

Conrod length [mm] 261.6

Compression ratio [-] 16:1

Unit displacement [L] 2.44

Engine operating conditions

Rotating speed [rev/min] 1737

Engine load [-] 57%p [ ]

Chamber Turbulence Quiescent

Piston bowl geometry Mexican hat

Intake temperature [K] 305.15

Injection rate [g/s] 1.94

Pilot injection start [°atdc] -65 -50

Pilot injection length [s] 1000  1450

Main injection start [°atdc] -5  20

Main injection length [s] 1950

EGR f ti 0 %

 Two-stage combustion
 High sensitivity to emissions
 No interaction between spray jets EGR fraction 0 %

Boost pressure [kPa] 186.2  220.6

 No interaction between spray jets

 pilot SOI, main SOI, boost pressure
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CFD simulation setupp
 KIVA-4 code developed at LANL (Torres & Trujillo, JCP 2006)

 Model improvements Model improvements
 Detailed chemistry capability using CHEMKIN-II (CONV) orpresent code
 Dynamic injection spray angle computation (Reitz and Bracco, SAE790494)
 Smooth grid snapping algorithm

 Diesel fuel modelling
 tetradecane (C14H30) liquid spray properties
 n-heptane (nC7H16) ignition chemistry

 NOx formation mechanism from GRI-mech
 5 additional species, 12 reactions

Grid Coarse Refined

Cells at BDC 16950 42480

15

Average resolution 2.2 mm 1.1 mm

Azimuth resolution 4.0 deg  3.3 deg



Results: Caterpillar SCOTE 3401p
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 Caterpillar SCOTE 3401: coarse vs. refined

 refined grid’s peak in AHRR due to ignition of
almost-quiescent mixture in the squish region Injection axis cutplane, -16°ATDC

 volume averaging and reduced spray 
penetration in the coarse grid reduces the 
AHRR peak and delays ignition

160
LLNL n-heptane mech., present code

480 

100

120

140

su
re

 (b
ar

)

300

360

420

as
e 

(J
/C

A
)experiment

coarse mesh
refined mesh

40

60

80

100

lin
de

r p
re

ss

120

180

240

300

f H
ea

t R
el

ea
0

20

40

In
-c

yl

0

60

120

R
at

e 
o

 

nj

 In both grids the fuel vapor jet is
deviated to the cylinder head
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Caterpillar SCOTE 3401: NOx emissionsp x
 pilot pulse SOI
 main pulse SOI35

40  

Experiment
coarse, ERC, present code
refined ERC present code

 Parameter sweeps

 boost pressure
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◦ Coarse grid has greater temperature 
distribution mixing 
◦ NOx are underestimated

Very good agreement 
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Conclusions

 A new code for the integration of sparse reaction kinetics of 
i t h b d l dgaseous mixtures has been developed

 The code has been coupled with KIVA-4, to model a heavy-duty 
Diesel engine operated in a two-stage combustion modeDiesel engine operated in a two stage combustion mode

 Comparison with a reference academic chemistry code showed Comparison with a reference academic chemistry code showed 
excellent agreement

 Speedups of the order of 2 times => 30+ times were achieved at a 
range of mechanism dimensions vs. FD code 

 CPU times for refined grid + detailed mech. were < 25h on 4CPU
Th l i i bl i i d il d i h i i The solver is suitable to incorporate semi-detailed reaction mechanisms in 
practical engine simulations
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There’s plenty of room at the bottomp y

 Find out optimal ODE integration method at different reactivity (and 
stiffness) conditions

 Investigate the accuracy of sparse semi-implicit integrators

 Find suitable Jacobian preconditioners

 Explore ODE solvers accuracy using quadruple-precision arithmetics

 Investigate the role of transport in ICE simulations with detailed Investigate the role of transport in ICE simulations with detailed 
chemistry integration
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Thanks for your attention!Thanks for your attention!
Questions?Q
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Jacobian matrix sparsity assumptionJ p y p

 Three-body and more complex pressure-dependent reactions
involve the whole mixture concentrationinvolve the whole mixture concentration


sn

i
tot

YC 

 In constant-pressure environments, Ctot is constant
 In constant volume environments  C has non negative derivative 


i i
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 In constant-volume environments, Ctot has non-negative derivative 
with each species
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 Dense lines in the Jacobian matrix

ji ijj WWYY 1  

23



Jacobian matrix sparsity assumptionJ p y p

 Simplifying assumption: 0

 tot

Y
C
 jY

 Affected is the Jacobian only, not the problem formulation
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Jacobian matrix sparsity assumptionJ p y p
 Comparison between complete and sparser formulation

25 2012-01-0143



Chemical Kinetics IVPs
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Interpolation of temperature-dependent quantitiesp p p q
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Interpolation of temperature-dependent quantitiesp p p q

28



Interpolation of temperature-dependent quantitiesp p p q
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Species thermodynamic properties databases
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Effect of RTOL and ATOL on local error
constraintconstraint
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