SpeedCHEM A Sparse Analytical Jacobian Chemistry code for Engine Simulations with Detailed Chemistry

Federico Perini

Dipartimento di Ingegneria "Enzo Ferrari" University of Modena, Italy

University of Wisconsin-Madison Engine Research Center, October 9th, 2012

Outline

Motivation and challenges

• The Sparse Analytical Jacobian approach

- Chemical Kinetics for Internal Combustion Engine simulations
- Sparsity and structure of the problem's Jacobian matrix
- Effect of reaction mechanism size on sparsity

• A code for the solution of chemical kinetics using SAJ

- Validation at adiabatic constant-volume reactors
- ODE solver choice, accuracy and problems

Modelling of a Heavy-Duty Diesel Engine

- CFD simulation methodology and grid characteristics
- Impact of grid resolution, and mechanism dimensions

Conclusions

Motivation and challenges

- New combustion concepts (HCCI/PCCI, RCCI) show impressive improvements in conversion efficiency
 - ICE indicated efficiency >50%
 - strong dependency on fuel chemistry and local mixture reactivity
- simple/phenomenological combustion models lack of resolution in modelling:
 - the whole range of operating conditions of practical systems
 - presence of exhaust gases in the mixture
 - simultaneous operation with multiple fuels
- Practical reaction mechanisms for Internal Combustion Engine simulations range from ~30 to ~200 species
 - Total CPU times typically unviable for practical engineering design (cases should run overnight)

Sizes of biofuels mechanisms (from Perini, Ph.D. Thesis, 2011)

Chemical Kinetics in ICE CFD

•
$$\frac{\partial Y_i}{\partial t} = -\nabla \cdot (Y_i \mathbf{v}) - \nabla \cdot Y_i \mathbf{v}_{d,i} + \frac{1}{\rho} \dot{\omega}_i W_i$$

• $\frac{\partial E}{\partial t} = -\nabla \cdot (E\mathbf{v}) - \nabla \cdot (\mathbf{v} \cdot \mathbf{T}) - \nabla \cdot (\dot{\mathbf{Q}} + \dot{\mathbf{Q}}_r) + \mathbf{v} \cdot \sum_j m_j \mathbf{a}_j + \sum_j \mathbf{v}_{d,i} \cdot m_j \mathbf{a}_j$

- Usually part of an operator-splitting scheme
- Each cell is treated as an adiabatic well-stirred reactor
 - embarassingly parallel problem
 - very stiff IVP

4

 only overall changes in species mass fractions and internal energy are passed to the flow solver

Sparse Analytical Jacobian approach

Chemical Kinetics is a <u>sparse</u> problem => **Jacobian** matrix

Jacobian matrix sparsity effects

Reduce scaling of the computational demand for evaluating the Jacobian matrix:
n_s² => n_s

 $n_{s}^{2} => n_{s}$

 $n_{s}^{3} => n_{s}$

- Reduce matrix storage requirements:
- Scaling of the costs for matrix factorization:
- Improve (quadratic) convergence of Newton's iterative method

Tabulation of temperature-dependent quantities

- Interpolation errors can be very low e.g. at degree-4 interpolation
- Fixed temperature steps make storage simpler, data contiguous, and interpolating polynomial coefficients simple to compute
- CPU time reduction of more than I order of magnitude

Tabulation of temperature-dependent quantities II – effect on total CPU time

- > The relative importance of tabulation decreases at increasing mechanism dimensions
- Anyway, it accounts for about -50% CPU time in comparison with the non-tabulated case
- At large reaction mechanisms, the solution of the linear system accounts for almost 50% time

Results: constant-volume reactors

Results: constant-volume reactors II

Almost linear speedup in comparison with a reference code that uses FD

- At typical mechanism dimension, the speedup is of almost one order of magnitude
- Nota Bene: two different solvers were used!

Results: constant-volume reactors III

Program	Cantera	Chemkin-PRO	CHEMKIN-II	SpeedCHEM
ODE solver	CVODE	Internal (DASPK?)	VODE	LSODES
relative tolerance	10-4	10-4	10-4	10-4
absolute tolerance	10-13	10-13	10-13	10-13

* All cases run on a 32-bit 3.0GHz Pentium IV machine with IGB RAM

Different solvers do have different performance...

- All of the solvers have been implemented sparse solution of linear systems (Yale sparse matrix package, 1983)
- The same truncation error handling has different meanings

$$|y(t_n) - \hat{y}(t_n)| \le RTOL \cdot |y(t_n)| + ATOL$$

... and stricter tolerances do not always mean better results

Modelling of a Heavy-Duty Diesel Engine

Caterpillar SCOTE 3401 Engine details				
Engine type	direct-injection diesel			
Number of cylinders	1			
Valves per cylinder	4			
Bore x Stroke [mm]	137.2 x 165.1			
Conrod length [mm]	261.6			
Compression ratio [-]	16:1			
Unit displacement [L]	2.44			
Chamber Turbulence	Quiescent			
Piston bowl geometry	Mexican hat			

- Two-stage combustion
 - High sensitivity to emissions
 - No interaction between spray jets
- pilot SOI, main SOI, boost pressure sweeps

 Extensive experimental measurements by Hardy, UW-ERC (SAE 2006-01-0026)

Engine operating conditions				
Rotating speed [rev/min]	1737			
Engine load [-]	57%			
Intake temperature [K]	305.15			
Injection rate [g/s]	1.94			
Pilot injection start [°atdc]	-65 ÷ -50			
Pilot injection start [°atdc]Pilot injection length [μs]	-65 ÷ -50 1000 ÷ 1450			
Pilot injection start [°atdc]Pilot injection length [μs]Main injection start [°atdc]	-65 ÷ -50 1000 ÷ 1450 -5 ÷ 20			
Pilot injection start [°atdc]Pilot injection length [μs]Main injection start [°atdc]Main injection length [μs]	-65 ÷ -50 1000 ÷ 1450 -5 ÷ 20 1950			
Pilot injection start [°atdc]Pilot injection length [μs]Main injection start [°atdc]Main injection length [μs]EGR fraction	-65 ÷ -50 1000 ÷ 1450 -5 ÷ 20 1950 0 %			

CFD simulation setup

KIVA-4 code developed at LANL (Torres & Trujillo, JCP 2006)

Model improvements

- Detailed chemistry capability using CHEMKIN-II (CONV) orpresent code
- Dynamic injection spray angle computation (Reitz and Bracco, SAE790494)
- Smooth grid snapping algorithm

Diesel fuel modelling

- tetradecane (CI4H30) liquid spray properties
- n-heptane (nC7HI6) ignition chemistry

▶ NO_x formation mechanism from GRI-mech

5 additional species, 12 reactions

Grid	Coarse	Refined
Cells at BDC	16950	42480
Average resolution	2.2 mm	I.I mm
Azimuth resolution	4.0 deg	~ 3.3 deg

Results: Caterpillar SCOTE 3401

- Excellent agreement of the new solver coupling vs. Chemkin-II
- Average CPU time reduction (included flow-field part):
 - 75.4% (LLNL) 48.8% (ERC)

Caterpillar SCOTE 3401: coarse vs. refined

- refined grid's peak in AHRR due to ignition of almost-quiescent mixture in the squish region
- volume averaging and reduced spray penetration in the coarse grid reduces the AHRR peak and delays ignition

Injection axis cutplane, -16°ATDC

LLNL n-heptane mech., present code

0.192

0.208

Caterpillar SCOTE 3401: NO_x emissions

Conclusions

- A new code for the integration of <u>sparse</u> reaction kinetics of gaseous mixtures has been developed
- The code has been coupled with KIVA-4, to model a heavy-duty
 Diesel engine operated in a two-stage combustion mode
- Comparison with a reference academic chemistry code showed excellent agreement
- Speedups of the order of 2 times => 30+ times were achieved at a range of mechanism dimensions vs. FD code
- CPU times for <u>refined grid + detailed mech.</u> were < 25h on 4CPU
 The solver is suitable to incorporate semi-detailed reaction mechanisms in

practical engine simulations

There's plenty of room at the bottom

- Find out <u>optimal ODE integration method</u> at different reactivity (and stiffness) conditions
- Investigate the accuracy of sparse <u>semi-implicit</u> integrators
- Find suitable Jacobian preconditioners
- Explore ODE solvers accuracy using <u>quadruple-precision arithmetics</u>
- Investigate the role of transport in ICE simulations with detailed chemistry integration

Thanks for your attention! Questions?

Acknowledgements

- > Prof. Giuseppe Cantore and prof. Emanuele Galligani
- Prof. Rolf Reitz, Dr. Youngchul Ra, Dr. A. Krishnasamy, ERC staff & students
- **<u>VM Motori (Cento, Italy)</u>** for funding the present work with a research grant

Backup

Jacobian matrix sparsity assumption

Three-body and more complex pressure-dependent reactions involve the whole mixture concentration

$$C_{tot} = \sum_{i=1}^{n_s} \frac{\rho Y_i}{W_i}$$

- In constant-pressure environments, C_{tot} is <u>constant</u>
- In constant-volume environments, C_{tot} has non-negative derivative with each species

$$\frac{\partial C_{tot}}{\partial Y_j} = \frac{\partial}{\partial Y_j} \left(\sum_{i=1}^{n_s} \frac{\rho Y_i}{W_i} \right) = \frac{\rho}{W_j} \quad \forall \ j = 1, \dots, n_s$$

Dense lines in the Jacobian matrix

Jacobian matrix sparsity assumption

Affected is the Jacobian only, not the problem formulation

Jacobian matrix sparsity assumption

Chemical Kinetics IVPs

Chemical kinetics IVPs in adiabatic environments

- For an arbitrary reaction mechanism, $\sum_{i=1}^{n_s} \nu'_{k,i} M_i \rightleftharpoons \sum_{i=1}^{n_s} \nu''_{k,i} M_i, \qquad k = 1, \cdots, n_r$
- Mass conservation: $\frac{dY_i}{dt} = \frac{W_i}{\rho} \sum_{k=1}^{n_r} \left(\nu_{k,i}'' - \nu_{k,i}' \right) q_k(\mathbf{Y}, T), \qquad i = 1, \cdots, n_s$
- Energy conservation: $\frac{dT}{dt} (\mathbf{Y}, T) = -\frac{1}{\bar{c}_{v}(\mathbf{Y}, T)} \sum_{i=1}^{n_{s}} \left(\frac{U_{i}(T)}{W_{i}} \frac{dY_{i}}{dt} (\mathbf{Y}, T) \right)$
- Integrated with stiff ODE solvers (VODE, LSODE, RADAU5...)
- Only species and internal energy sources are linked to the CFD solver

Da

Interpolation of temperature-dependent quantities

 Species thermodynamic potentials are polynomial functions of temperature

• in JANAF format, e.g.

$$U_i = R_{mol} \left[(a_i - 1) T + \frac{b_i}{2} T^2 + \frac{c_i}{3} T^3 + \frac{d_i}{4} T^4 + \frac{e_i}{5} T^5 + f_i \right];$$

 Equilibrium constant is an exponential function of the reaction's free energy delta:

•
$$Kc_{eq,k}(T) = \exp\left(-\Delta g_k^0\right) \left(\frac{p_{atm}}{RT}\right)^{\sum_{i=1}^{ns} \left(\nu_{k,i}'' - \nu_{k,i}'\right)};$$

• Reaction rates are exponentials too:

•
$$\kappa_{f,k}(T) = A_k T^{b_k} \exp\left(-\frac{E_k}{RT}\right).$$

Interpolation of temperature-dependent quantities

- Then, the interpolation errors can be very low e.g. at degree-4 interpolation
- Fixed temperature steps make storage simpler and data contiguous
- CPU time reduction of more than 1 order of magnitude with -O3

Interpolation of temperature-dependent quantities

$$p_n(x) = \sum_{i=0}^{n} a_i x^i = a_0 + a_1 x + a_2 x^2 \dots + a_n x^n$$

Effect of RTOL and ATOL on local error constraint

 $|y(t_n) - \hat{y}(t_n)| \le RTOL \cdot |y(t_n)| + ATOL$

31