A computational investigation of the effects of swirl ratio and injection pressure on mixture preparation in a light-duty diesel engine

> <u>F. Perini</u>^a, A. Dempsey^a, R. Reitz^a D. Sahoo^b, B. Petersen^c, P. Miles^b ^aUniversity of Wisconsin Engine Research Center ^bSandia National Laboratories ^cFord Motor Company

> > ERC Student Seminar – 01/22/2013

slide 1

Outline

Experimental vs. Numerical study details

Motivation and problem setup

Model improvement

Compressible connecting rod assembly

Local mixture preparation study

Non-reacting conditions

Model accuracy impact on fired operation

- Wall heat transfer
- sensitivity to swirl ratio and injection pressure

slide 2

Optical engine experimental setup

ERC Seminar – 01/22/2013

Optical engine experimental setup II

7 Diesel PPCI cases

(ASME ICES2012-81234)

- Low-load
- Highly dilute
- Slightly boosted
- R_s and p_{inj} sweeps
- Very low PM and NO_x
 Significant UHC and CO
 ← incomplete oxidation of bulk gas mixtures
 → comb. efficiency ↓
- Crucial role of mixing and chemical kinetics

slide 4

	n	
	Non-reacting mixture	Reacting mixture
Intake charge composition [mole fractions]	100% N ₂	10% O ₂ 81% N ₂ 9% CO ₂
Intake pressure [bar]	1.5	
Intake temperature [K]	300	372
Engine speed [rpm]	1500	
IMEP [bar]		3.0
Global equiv. ratio [-]		0.3
Injected fuel mass [g]	0.0088	0.0088
Start of Injection [deg]	$-23.0 \pm 0.1, -23.3 \pm 0.1$	
Parameter sweeps:	$R_{s} = 1.55,$	$*p_{inj} = 860 \text{ bar}$
- swirl ratio, R _s [-]	$*R_{s} = 2.20,$	$p_{inj} = 860 \text{ bar}$
- injection pressure,	$R_s = 3.50,$	$p_{inj} = 860 \text{ bar}$
p _{inj} [bar]	$R_s = 4.50,$ $P_s = 2.20$	$p_{inj} = 860 \text{ bar}$
*baseline case	$R_s = 2.20,$ $R_s = 2.20,$	$p_{inj} = 500 \text{ bar}$ $p_{inj} = 1220 \text{ bar}$

Computational model setup

- The ERC version of KIVA3v-R2 is employed
- Improvements to:

ſ	Phenomenon	Submodel	
	Spray breakup	KH-RT instability, Beale and Reitz	
Spray -	Near-nozzle flow	Gas-jet theory, Abani et al.	
	Droplet collision	O'Rourke model with ROI (radius-of- influence)	
	Wall film	O'Rourke and Amsden	
Fuel ->	Evaporation	Discrete multi-component fuel, Ra and Reitz	
	Turbulence	RNG k- ε, Han and Reitz	
Chemistry -	Combustion	Detailed chemical kinetics with sparse analytical Jacobian, Perini et al.	
	Reaction kinetics	Reduced PRF mechanism,Ra andReitz	

Grid from resolution study (SAE 2012-01-0143)

slide 5

Compressible connecting rod model I

Compressible connecting rod model II

- Experimental setup → accounts for deviations from rigid slider-crank
 - → does not consider bearing and crankshaft clearances
- Thermal expansion <u>less affected</u> by engine operation
 - <u>Ring friction</u> is dominant ← scarcely reached by hot gases
 - **Dynamic squish height can improve modelling** \rightarrow pollutants

slide 7

Compressible connecting rod model III

Local equivalence ratio prediction

University of Wisconsin -- Engine Research Center ERC Seminar – 01/22/2013

slide 9

Swirl ratio effects I – CA = -17.5 deg

Swirl ratio effects II – CA = -5.0 deg

Swirling flow structure

Comparison with PIV measurements by Petersen (SAE 2011-01-1285)

radius [cm] from cylinder axis

radius [cm] from cylinder axis

- Predicted velocity profile accuracy deteriorates when approaching TDC
 - → high angular momentum from the squish volume forced inward
 - OK with the model's geometry but not seen in the experiments

- impact of valve recesses in the head and cut-outs on the piston slide 12 University of Wisconsin -- Engine Research Center ERC Seminar – 01/22/2013

Injection pressure effects I – CA=-5.0

Fired engine operation I – R_s sweep

2) over-predicted jet deflection → more homogeneous and leaner mixtures → longer ignition delay

Fired engine operation II – p_{inj} sweep

Concluding Remarks I

Aim: <u>assess+improve the accuracy of KIVA modelling</u> of an optical light duty diesel engine operated in LTC (PPC) mode, with respect to:

→ <u>quantitative</u> equivalence ratio distributions provided by the experiments at three in-cylinder planes

→ understanding and exploring the role of mixing and wall heat transfer on combustion development

Non-reacting operation and equivalence ratio distribution

- Elastic extended piston connecting rod assembly model
 - Significantly improved motored pressure curve match
 - Need to lower geometrical CR → wall heat transfer?

slide 17

Concluding Remarks II

Non-reacting operation and equivalence ratio distribution

- Mixture dynamics and equivalence ratio stratification before ignition
 - Very accurate penetration is predicted with a refined grid
 - **Over-predicted swirl** when approaching TDC
 - \rightarrow jet deflection and under-predicted penetration at $\mathbf{p}_{inj} \mathbf{\downarrow}$
 - Under-predicted turbulent mixing, crucial to emissions

Fired engine operation

- At increasing Rs: predicted HTHR timing delays measured HTHR timing advances
- ➔ The model responds to wall heat transfer and over-predicted spray deflection

→ the experiments instead show that mixing rules over ignition timing

slide 18

Concluding Remarks III

Fired engine operation

- Injection pressure plays a major role on combustion development
 - Increased impact area + greater spray jet momentum
 - → Delayed ignition timing can lead to misfire at very high pressures

Future Work

CFD model impact on mixing and ignition

- Turbulent transport \rightarrow generalized RNG k- ε model
- Fluid flow solver <u>accuracy</u>
- \rightarrow solution tolerances and numerics

Wall <u>heat transfer</u>

slide 19

- → Impact of wall temperatures
- ➔ Conjugate heat-transfer

Future Work

UHC and CO emissions

Investigate impact of the reaction mechanism on predicted emissions

Thanks for your attention! Questions?

slide 21

Back-up slides

slide 22

Laser sheet imaging – missing zones

KIVA plane slices reconstruction

KIVA plane slices reconstruction

- Reconstruct data at those values using Delaunay Triangulation (left)
- Pursue <u>cubic spline interpolation</u> at a more refined grid, using point positions from the laser sheet images (right)

