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OutlineOutlineOutlineOutline
 Experimental vs. Numerical study details

 Motivation and problem setup

 Model improvementp
 Compressible connecting rod assembly

 Local mixture preparation study Local mixture preparation study
 Non-reacting conditions

 Model accuracy impact on fired operation
 Wall heat transfer
 sensitivity to swirl ratio and injection pressure
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OpticalOptical engineengine experimentalexperimental setupsetup
f ASME ICES2012 81234 Engine specifications 

Bore x stroke [mm] 82.0 x 90.4 
Unit displacement [cm3] 477.2 
Compression ratio 16 4 : 1

 cf. ASME ICES2012-81234

P1 = Half of squish regionP1 = Half of squish regionCompression ratio 16.4 : 1
Squish height at TDC [mm] 0.88 

 

Bosch CRIP 2.2 Injector

P1  Half of squish region

P2 = Piston bowl rim

P3 = Inner bowl region

P1  Half of squish region

P2 = Piston bowl rim

P3 = Inner bowl regionBosch CRIP 2.2 Injector
Sac volume [mm3] 0.23 
Number of holes 7 
Included angle [deg] 149 
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Composition [mole fractions] 75% nC7H16 
 25% iC8H18 
Fluorescent tracer [mass fraction] 0.5% C7H8 

 266 nm UV horizontal laser sheet
 Images at (degrees ATDC):

r axis [cm]
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Equivalent Cetane Number 47
 

CA = [-17.5:2.5:-5.0]



OpticalOptical engineengine experimentalexperimental setupsetup IIII
i l N ti R ti 7 Diesel PPCI cases

(ASME ICES2012-81234)

 Low-load

 Non-reacting 
mixture 

Reacting 
mixture 

Intake charge 
composition [mole 100% N2 

10% O2 
81% N2 Low load

 Highly dilute
 Slightly boosted

R d

fractions] 9% CO2 
Intake pressure [bar] 1.5 
Intake temperature [K] 300 372 

 Rs and pinj sweeps

 Very low PM and NOx

Si ifi t UHC d CO

Engine speed [rpm] 1500
IMEP [bar] --- 3.0 
Global equiv. ratio [-] --- 0.3 
I j t d f l [ ] 0 0088 0 0088 Significant UHC and CO 

 incomplete oxidation
of bulk gas mixtures

Injected fuel mass [g] 0.0088 0.0088

Start of Injection [deg] -23.0  0.1, -23.3  0.1 
Parameter sweeps: *Rs = 1.55,     

*Rs = 2.20,
*pinj = 860 bar 
*pinj = 860 barswirl ratio R [ ]g

 comb. efficiency 
 Crucial role of mixing 

and chemical kinetics

Rs  2.20, 
*Rs = 3.50,  
*Rs = 4.50,  
*Rs = 2.20,  
*R = 2 20

pinj  860 bar
*pinj = 860 bar 
*pinj = 860 bar 
*pinj = 500 bar 
* 1220 b

- swirl ratio, Rs [-] 
- injection pressure,  
- pinj [bar] 

*baseline case
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and chemical kinetics *Rs = 2.20, *pinj = 1220 barbaseline case



ComputationalComputational modelmodel setupsetup
 The ERC version of KIVA3v-R2 is employed
 Improvements to:

Phenomenon Submodel

Spray breakup KH-RT instability, Beale and Reitz

Near-nozzle flow Gas-jet theory, Abani et al. Spray j y

Droplet collision O’Rourke model with ROI (radius-of-
influence)

Wall film O’Rourke and Amsden

p y

Evaporation Discrete multi-component fuel, Ra and Reitz 

Turbulence RNG k- ε, Han and Reitz 

C b ti Detailed chemical kinetics with sparse 

Fuel

 G id f l ti t d (SAE 2012 01 0143)

Combustion p
analytical Jacobian, Perini et al. 

Reaction kinetics Reduced PRF mechanism,                 Ra and 
Reitz 

Chemistry
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 Grid from resolution study (SAE 2012-01-0143)



CompressibleCompressible connectingconnecting rodrod modelmodel II
Motivation
 Motoring pressure trace match requires

model calibration

over-prediction
around TDCmodel calibration

 Incomplete piston/head geometry modeling
 Charge blow-by to the crankcase
 Compressibility in silica piston assemblies

around TDC

under-prediction
is not negligible (Aronsson et al., SAE2012-01-1604)

 Using Geometrical CR leads to significant
di ti i th d l

under prediction
during expansion

pressure overprediction in the model

 Engine grid’s CR typically reduced
b tifi i ll i i i lby artificially increasing crevice volume
 Affects trapped mass, wall heat transfer, pollutants
 Still difficult to match pressure trace shape
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CompressibleCompressible connectingconnecting rodrod modelmodel IIII
*figure not in scale

Target squish = 0.88 mm

C ld l 1 04 Th l i 0 31

Measured thermal
expansion

Cold clearance = 1.04 mm

Compression  0.15 mm (TDC)

Thermal expansion  0.31 mm

TARGET POS.

SETTINGSETTING
Measured extended

piston assembly
compliance

 Experimental setup  accounts for deviations from rigid slider-crank
 does not consider bearing and crankshaft clearances

compliance

 does not consider bearing and crankshaft clearances
 Thermal expansion less affected by engine operation

 Ring friction is dominant  scarcely reached by hot gases
 Dynamic squish height can improve modelling  pollutants
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 Dynamic squish height can improve modelling  pollutants



CompressibleCompressible connectingconnecting rodrod modelmodel IIIIII

MODEL DETAILS
 Static intertial forces are 

Ap


dt
d 

2
sr c

b

||F


F


neglected
 Global compliance is modeled

as an effective connecting rod length, c 

F


z

  tan1i  dcsdzP 



 g g ,

 Extended piston + bearings + crankshaft

MODEL CALIBRATION

.cos
tan

1sin
2





dtdt
P 






 

6 x 106 motored trace match
 

Need to reduce CR:
Wall heat transfer 

modeling inaccuracy?MODEL CALIBRATION
 “Rigid” grid: CR= 16.7, 

squish = 0.73 mm (cold height+thermo)
 very low compliance (k = 4.5e4 N/mm)

5

6

[P
a]

y p ( / )
(5 times lower than measured)

 “Calibrated” grid: CR=16.3, sq = 0.73 mm
 k = 1.0e5 N/mm (half than measured) 3

4
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es
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CR = 15.7, rigid
CR = 16.7, k = 4.5e07 N/m
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CR = 16.3, k = 1.0e08 N/m
experiment



LocalLocal equivalenceequivalence ratioratio
predictionprediction
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SwirlSwirl ratioratio effectseffects I I –– CA = CA = --17.5 17.5 degdeg

KIVA, -17.5 CA

m
]

Experiment, -17.5 CA
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m
]

Experiment, -17.5 CA
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x axis [cm]
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SwirlSwirl ratioratio effectseffects II II –– CA = CA = --5.0 5.0 degdeg
Rs = 1.55, pinj = 860 bar Rs = 4.5, pinj = 860 bar

KIVA, -5.0 CA Experiment, -5.0 CA
 1.5

KIVA, -5.0 CA Experiment, -5.0 CA
1L k f i i  l l i t f i f
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SwirlingSwirling flow flow structurestructure
C i i h PIV b P (SAE 2011 01 1285)

25  

 Rs = 2.20
Rs = 3 50 12

14  

 Comparison with PIV measurements by Petersen (SAE 2011-01-1285)

tangential velocities [m/s], CA = -50.0
13

tangential velocities [m/s], CA = -35.0 tangential velocities [m/s], CA = -25.0
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(lines)   KIVA, Bessel fit  = 2.20
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 Predicted velocity profile accuracy deteriorates when approaching TDC
 high angular momentum from the squish volume forced inward
 OK with the model’s geometry but not seen in the experiments
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g y p
- impact of valve recesses in the head and cut-outs on the piston



InjectionInjection pressurepressure effectseffects I I –– CA=CA=--5.05.0

KIVA, -5.0 CA Experiment, -5.0 CA
 1

KIVA, -5.0 CA Experiment, -5.0 CA
 1.5

Rs = 2.2, pinj = 500 bar Rs = 2.2, pinj = 1220 bar
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InjectionInjection pressurepressure, , mixturemixture stratificationstratification
 Cumulative azimuthal equivalence ratio distributions

100 %
KIVA, Rs = 2.2, pinj = 500 bar

 100 %
Experiment, Rs = 2.2, pinj = 500 bar

 

 Histograms at fixed distances from cylinder axis
Rs = 2.2, pinj = 500 bar Rs = 2.2, pinj = 1220 bar
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FiredFired engineengine operationoperation I I –– RRss sweepsweep

40
AHRR, pinj = 860 bar, Rs sweep
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]  

KIVA, Rs = 1.55
Exp, Rs = 1.55

Experiment: ignition
advances at Rs = 1.55

 i h i t i th
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KIVA, Rs = 2.20
Exp, Rs = 2.20
KIVA, Rs = 3.50
Exp, Rs = 3.50

 richer mixtures in the 
squish region

At higher Rs richer

10
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ea
t At higher Rs, richer

mixtures are due to fuel
more strongly confined to

the bowl
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0
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p

 

the bowl

KIVA: - similar ignition timings  good average match
- inverse ignition behavior at Rs under investigation: 

1) Wall heat transfer
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1) Wall heat transfer.  
2) over-predicted jet deflection  more homogeneous and 

leaner mixtures  longer ignition delay



FiredFired engineengine operationoperation II II –– ppinjinj sweepsweep

40
AHRR, Rs = 2.20, pinj sweep
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LT HR timing well captured at 
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7 x 106pressure trace, Rs = 2.20, pinj sweep
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Computational Investigation at higher
injection pressures
 Misfiring conditions at pinj  1500 bar
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 Misfiring conditions at pinj  1500 bar 
 Wall heat transfer
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ConcludingConcluding RemarksRemarks II

 Aim: assess+improve the accuracy of KIVA modelling of an
optical light duty diesel engine operated in LTC (PPC) mode, with
respect to:p
 quantitative equivalence ratio distributions provided by the 
experiments at three in-cylinder planes
 understanding and exploring the role of mixing and wall understanding and exploring the role of mixing and wall
heat transfer on combustion development

Non-reacting operation and equivalence ratio distribution
 Elastic extended piston – connecting rod assembly model

 Significantly improved motored pressure curve match
 Need to lower geometrical CR  wall heat transfer?
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ConcludingConcluding RemarksRemarks IIII

Non-reacting operation and equivalence ratio distribution
 Mixture dynamics and equivalence ratio stratification before ignition

 Very accurate penetration is predicted with a refined grid Very accurate penetration is predicted with a refined grid
 Over-predicted swirl when approaching TDC 
 jet deflection and under-predicted penetration at pinj 

 Under predicted turbulent mixing crucial to emissions Under-predicted turbulent mixing, crucial to emissions

Fired engine operation
 At increasing Rs: predicted HTHR timing delays

measured HTHR timing advances

 The model responds to wall heat transfer and over-predicted spray 
deflection

 the experiments instead show that mixing rules over ignition timing
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 the experiments instead show that mixing rules over ignition timing



ConcludingConcluding RemarksRemarks IIIIII
Fi d i iFired engine operation
 Injection pressure plays a major role on combustion development

 Increased impact area + greater spray jet momentum
 Delayed ignition timing can lead to misfire at very high pressures

F W kF W k
CFD model impact on mixing and ignition

Future WorkFuture Work

 Turbulent transport  generalized RNG k- model

 Fluid flow solver accuracy  solution tolerances and numerics Fluid flow solver accuracy  solution tolerances and numerics

 Wall heat transfer  Impact of wall temperatures
 C j t h t t f
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 Conjugate heat-transfer



Future WorkFuture Work

UHC and CO emissions
 Investigate impact of the reaction mechanism on predicted emissions
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48k cells grid
experiment
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CO, CA=35.0

 Identif and alidate

Simulation

 Identify and validate
in-cylinder emission
sources
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Simulation



ThanksThanks forfor youryour attentionattention!!
QuestionsQuestions??
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Laser Laser sheetsheet imagingimaging –– missingmissing zoneszones

Laser sheet

distortion when
passing through
complex surfaces

(266nm, UV)

injector tip “shade”

LLens

Mirror CameraMirror
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KIVA KIVA planeplane slicesslices reconstructionreconstruction

 Generate a plane representation:

 kjikjiPPP vvvuuuzyxplane 

O

z

P v

x

y u

 Compute intersecting
points of KIVA mesh 3

4

points of KIVA mesh 
with plane 

1

2
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KIVA KIVA planeplane slicesslices reconstructionreconstruction

 Reconstruct data at those values using Delaunay 
Triangulation (left)

 Pursue cubic spline interpolation at a more refined grid, p p g ,
using point positions from the laser sheet images (right)
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