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Tips and tricks for good (and fast) 
scientific programming, with and 
introduction to parallel computing

2 – Writing high-performance code

Lecturer: Federico Perini

Madison, 2013/12/04
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Lecture series outline

1. Basics of good programming practice
� Tools for good and comfortable code development and maintenance

� Good programming practice 

2. Optimization and Profiling 
� Basics of computer operations

� Basic techniques for high-performance coding

� Making KIVA faster

3. Parallel programming
� Different tools for different applications

� Examples of code parallelization with OpenMP and MPI

This schedule is open to changes upon requests!
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Writing high-performance code

One of the major achievements of science in the XX century is 
complexity

Even if single phenomena can be described by 

reasonably simple laws, 

when many phenomena are strongly inter-linked 

very small perturbations can lead to extremely complex, 
sometimes chaotic, behavior

Understanding and predicting their behavior would not 
have been possible without the development of 

numerical analysis and scientific computing
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Writing high-performance code
Any scientist needs to find a tradeoff between 

� The resolution of his problem � spatial and temporal scales 

� The availability of computational resources 

1. Choose/study suitable algorithms for his class of problems
� E.g., an efficient engine simulation with 10000 cells and 10 species = 170.000 ODEs requires 

different algorithms than the same simulation with 500k cells and 200 species = 10.35M ODEs

2. Fine-tune the code to optimize its performance

Even the best algorithm would be useless if most of the 
computational time is spent multiplying zeroes, or looping 

through memory regions to find the data, repeating the same 
calculations multiple times, or requiring unreasonably high 

accuracy
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Evolution of CPU architectures
“Computers in the future may weigh no more than 1.5 tons”

Popular Mechanics, 1949

time

Vector processors
Pipelined CPUs
Superscalar CPUs
Out-of-order CPUs
Super-pipelined CPUs
SIMD units
SMT CPUs
Multi-core CPUs
Massively parallel GPUs

Manycore CPUs
…

Evolution in computing processors is 
towards parallelization, i.e., completing 

multiple tasks at the same time

The time required for completing a 
single task is limited by the number of 

operations � the clock frequency

Increase in clock frequency has been slowing 
down due to transistor scaling problems

(Voltage not scaling as size!)
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Memory hierarchy

size
access
speed

CPU
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Finding (reading) data 

- The closer to the CPU, the faster

- Only few data are needed for simple operations

- Put what’s not currently needed in the slower levels

- Caching � e.g. use of intermediate scalars

1. Look up L1 cache (1-5 cycles)
2. Look up L2 cache (20 cycles)
3. Look up RAM (more cycles)
4. Copy from RAM to L2
5. Copy from L2 to L1
6. Copy into registers for operation
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Finding (reading) data 

- Importance of data contiguity

i = 1, j = 1
- Look for a(1,1) in L1 � maybe cache miss
- Load from RAM
- Copy from a(1,1) to a(8,1) into L1 (cacheline)
- Copy a(1,1) into a register
- Look for b(1,1) in L1  � maybe cache miss
- Load from RAM
- Copy from b(1,1) to b(8,1) into L1 (cacheline)
- Copy b(1,1) into a register
- Calculate a(1,1)*b(1,1)

The data block 
fetched from the 
main memory
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Finding (reading) data 
- Importance of data contiguity

i = 1, j = 2
- Look for a(1,2) in L1 � cache miss

Need to load a(1,2) to a(8,2) from RAM, maybe trashing the data a(1,1) 
to a(8,1) previously loaded

� Inverting the i and j loops allows to maximize cache hits
� The compiler can do that, if we use intrinsic functions
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Pipelines
- Sequences of independent stages needed to complete an instruction

- In pipelined CPUs, multiple stages run at the same time for different 
instructions 

cycles

#
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Instruction 2

Instruction 3

Instruction 4

…
Fetch
Decode
Calculate address
Read operands
Execute
Write result



University of Wisconsin-Madison Engine Research Center
ERC Programming Seminar series – Madison, WI – Dec 4, 2013

slide 11

The necessary CPU time

Operation CPI (cycles per 
instruction)

Sum 12

Product 12

Division 20

sqrt 24

sin, cos 52

tan 100

log 60

exp, power 130

Condition evaluation 70

- Every operation is the 
result of multiple simple 
floating point calculations

- Complex arithmetic is 
expensive for computers, 
too

- With pipelining we can 
improve CPI on 
parallelizable loops

� No conditional clauses 

within loops!
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The necessary accuracy

� Due to round-off and truncation in floating point arithmetic 
even the actual sequence of operations will change the results

� Real and integer numbers count!

� Store and retrieve, if possible (e.g., tables)

� Importance is that the overall numerical scheme is stable, i.e., 
will converge even in presence of perturbations
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How to start optimizing

� Manual code operations can significantly speed-up the code
� E.g., matrix product

� But for simple operations, libraries are available
� BLAS, LAPACK, etc.

� Modern compilers can handle loop-based optimizations 
� Compiling time is not a problem anymore

� Better to have simpler-looking code and leave these optimizations to the 
compiler

� Do not change operations that are already optimized, this will 
increase the risk of introducing errors

� Use the profiler to understand where are the code’s 
bottlenecks
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Simple optimization techniques

1. Avoid divisions and complex functions where possible

200 divisions 1 division

100 powers 400 products

200 products

~ 19400 cycles ~4820 cycles

The compiler will optimize part of this
Faster, simpler to 
read, less prone 

to errors
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Simple optimization techniques

2. Keep data contiguity during every operation

3. Do not introduce clauses within loops

CODING HORROR
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Simple optimization techniques

4. Always start from the profiler (e.g., gprof)

- Will tell what the bottlenecks are at runtime

- Different bottlenecks may arise in different runs

� A “call graph” will show the CPU time needed by all functions 
and the ones nested into them

� Can look at every single line of code

 Well optimized: no dominant 
sources of CPU time

� Poorly optimized: few 
operations dominate CPU time
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The KIVA spd array

- It’s the only two-dimensional array in the code

� tip: never use two-dimensional arrays, if not needed!

- It contains species densities in every cell:  spd(i4, isp)

- What was the correct ordering? spd(isp, i4) or spd(i4, isp)?

� When we need to evaluate mixture-averaged properties, we 

need to access the species dimension

� when we need to evaluate field properties for a same species, 

we need to access the cell dimension

� KIVA chooses to give more importance to the field properties, as each species is advected
separately from each other

� At that time, only 10-12 species were typically used

� Good for the implicit solver, not for thermodynamics and equation-of-state relationships
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Practice
Making KIVA faster


