
University of Wisconsin-Madison Engine Research Center
ERC Programming Seminar series – Madison, WI – Nov 27, 2013

slide 1

Tips and tricks for good (and fast) 
scientific programming, with and 
introduction to parallel computing

1 - Basics

Lecturer: Federico Perini

Madison, 2013/11/27



University of Wisconsin-Madison Engine Research Center
ERC Programming Seminar series – Madison, WI – Nov 27, 2013

slide 2

Lecture series outline

1. Basics of good programming practice
� Tools for good and comfortable code development and maintenance

� Good programming practice 

2. Optimization, Debugging and Profiling 
� Compiler-based vs. manual optimization

� Debugging tools, with examples

� Finding and solving bottlenecks in the code

3. Parallel programming
� Different tools for different applications

� Examples of code parallelization with OpenMP and MPI

This schedule is open to changes upon requests!



University of Wisconsin-Madison Engine Research Center
ERC Programming Seminar series – Madison, WI – Nov 27, 2013

slide 3

Lecture 1 – the basics

1. What does it mean to build a program

2. The KISS principle

3. Necessary programming practices

4. Q&A



University of Wisconsin-Madison Engine Research Center
ERC Programming Seminar series – Madison, WI – Nov 27, 2013

slide 4

What is a program



University of Wisconsin-Madison Engine Research Center
ERC Programming Seminar series – Madison, WI – Nov 27, 2013

slide 5

What is a program

Methods that operate on data structures

data structures



University of Wisconsin-Madison Engine Research Center
ERC Programming Seminar series – Madison, WI – Nov 27, 2013

slide 6

‘Building’ a program
= going from a set of source code files to an executable

1. Coding
• The process of writing source files containing the data structures and the 

methods that operate on them for our particular purpose, in a specific 
programming language syntax

2. Compiling
• The translation of the source code into machine language instructions

• Creates ‘object’ files or libraries (.o, .obj, .a, .dll, etc.) that are not 
language-bound anymore

• Look at one source file at the time and check for syntax errors

3. Linking
• The generation of an executable file from multiple object files

• Look at the global program structure

• Check that all the required functions/libraries are defined in the object files



University of Wisconsin-Madison Engine Research Center
ERC Programming Seminar series – Madison, WI – Nov 27, 2013

slide 7

Programming philosophies

Different approaches to how do data structures and methods interact

� Procedural programming
• Task-oriented (subroutines, functions)

• Methods, tasks that operate on data structures of unknown 
origin

e.g.: We want to calculate an injection velocity



University of Wisconsin-Madison Engine Research Center
ERC Programming Seminar series – Madison, WI – Nov 27, 2013

slide 8

Programming philosophies

� Structured and object-oriented programming
• Objects (instances of classes) have

• Attributes (data)

• Associated procedures (methods)

• Methods and data structures are encapsulated

• Fortran: module/type/class

e.g.: We want to calculate an injection velocity

- An injection velocity is not of general usage, it only makes sense within a 
certain representation of a fuel injector nozzle

- A fuel injector nozzle has some properties that are unique to that particular 
class of objects, e.g., a hole diameter, an injection pressure, a position in space, 
but whose values depend on the particular instance of that class, e.g. my PFI 
injector, your common rail injector, etc.



University of Wisconsin-Madison Engine Research Center
ERC Programming Seminar series – Madison, WI – Nov 27, 2013

slide 9

Programming philosophies

Data are encapsulated in 
an ‘injector_nozzle’ 
object

These are not modifiable 
unless made available 
through some interface 
function, e.g., 
set_geometry



University of Wisconsin-Madison Engine Research Center
ERC Programming Seminar series – Madison, WI – Nov 27, 2013

slide 10

Programming philosophies

We need to build our object, 
i.e., initialize its characteristic 
data properties

Methods operate with these 
data without making them 
visible to the outside



University of Wisconsin-Madison Engine Research Center
ERC Programming Seminar series – Madison, WI – Nov 27, 2013

slide 11

Programming philosophies

After object creation, there is 
no interaction anymore with 
its encapsulated properties

Structured programming enhances maintainability and expandability, 
but both philosophies are equally valid, as long as code is good code

Suppose we want to 
implement a new nozzle flow 
model. We won’t need to 
change the whole program!
Changes will be confined to 
the injector object



University of Wisconsin-Madison Engine Research Center
ERC Programming Seminar series – Madison, WI – Nov 27, 2013

slide 12

How to begin
� Open-source Fortran compiler suite

http://gcc.gnu.org/wiki/GFortran

http://www.equation.com (Windows)

http://finkproject.org, http://www.macports.org (Mac)

� Open-source IDE with Fortran support

http://www.codeblocks.org/

� Open-source MPI library

http://www.mpich.org/downloads/



University of Wisconsin-Madison Engine Research Center
ERC Programming Seminar series – Madison, WI – Nov 27, 2013

slide 13

How to begin
� An IDE is structured in terms of Projects

Constant access to all 
the source files

Syntax highlighting
and code completion
� Including variables, 

methods, classes

Custom build 
methods

Automatic 
makefiles

Handles
debugging

Customizable
(plugins, scripts)



University of Wisconsin-Madison Engine Research Center
ERC Programming Seminar series – Madison, WI – Nov 27, 2013

slide 14

The KISS principle



University of Wisconsin-Madison Engine Research Center
ERC Programming Seminar series – Madison, WI – Nov 27, 2013

slide 15

the KISS principle

� Keep it simple, stupid

� Every construct should be
• self-consistent: do not require unnecessary

information from the outside
• Just use variable input-output

• complete: perform all the requested operations in 
the same subroutine/function

• single: do not perform more than one task in 
every subroutine/function



University of Wisconsin-Madison Engine Research Center
ERC Programming Seminar series – Madison, WI – Nov 27, 2013

slide 16

the KISS principle

� See the code as a series of ‘black’ boxes that interact each other

(Modules or Classes can be very good boxes)

� Ideally, the data relevant to every module/class should only be 
known within that module/class, and no data should be shared 
among them, unless communicated through calls to public 
functions/subroutines

Clock 
Module

t

Engine
module

CA

set_crank_angle

Piston
Module
zpist set_piston_position



University of Wisconsin-Madison Engine Research Center
ERC Programming Seminar series – Madison, WI – Nov 27, 2013

slide 17

the KISS principle

� Every function/subroutine should not be 
longer than one page
• We are not superheroes, handling long scripts that do not fit 

the page (screen) is extremely prone to errors 

KIVA squish layer snapper

snapb.f
• 1362 lines
• 18 pages (print)



University of Wisconsin-Madison Engine Research Center
ERC Programming Seminar series – Madison, WI – Nov 27, 2013

slide 18

the KISS principle

� If it is longer, probably there is some sub-
task that can be contained in a separate 
construct

KIVA snapb.f
• Find moving surface 
• Understand moving direction
• Decide if a snap is needed
• Add / remove a layer
• Interpolate physical quantities

� This would apply to any 
moving surface in the domain!



University of Wisconsin-Madison Engine Research Center
ERC Programming Seminar series – Madison, WI – Nov 27, 2013

slide 19

Guidelines and tips for good 
programming practice



University of Wisconsin-Madison Engine Research Center
ERC Programming Seminar series – Madison, WI – Nov 27, 2013

slide 20

Use meaningful names
� Stick to a suitable naming_convention, namingConvention
� Consistency between filename, contained modules and related type 

structures, e.g.

polygons_mod.f90

module polygons_mod
implicit none

type, public :: polygons
… 
end type

contains
…

end module polygons_mod

� The more descriptive the better



University of Wisconsin-Madison Engine Research Center
ERC Programming Seminar series – Madison, WI – Nov 27, 2013

slide 21

Use meaningful names

� Credit: prof. C.J. Rutland, “Notes on Programming”, 2009



University of Wisconsin-Madison Engine Research Center
ERC Programming Seminar series – Madison, WI – Nov 27, 2013

slide 22

Use comments
� At least 50% of the code should be occupied by

comments! 

� Header comments
• Briefly describe what the routine / data structure is related to
• Describe input/output/storage properties
• List references to the algorithm
• Keep track of subroutine changes and updates

� Comments within sections
• if constructs / do loops / etc.
• Comment what is being done

� Subroutine updates
• When changing something, always write down name of the coder and 

date



University of Wisconsin-Madison Engine Research Center
ERC Programming Seminar series – Madison, WI – Nov 27, 2013

slide 23

Use comments

� Example

! [FP] 1/1/1970
real(8), parameter :: pi = acos(-1.d0)

…
! [FP] 1/1/1970
! Hardcoded constant moved to parameters
! circ = 2 * 3.14 * radius
circ = 2 * pi * radius

… 



University of Wisconsin-Madison Engine Research Center
ERC Programming Seminar series – Madison, WI – Nov 27, 2013

slide 24

Use comments
� Always label do/if/case constructs

� Use logical variables with meaningful names

� The code should mimic a language’s semantic, and be 

almost human-readable 

- What is KGO?
- Where is the code jumping to 

at any of these conditions?
- Why do we have to specify a 

costly if clause if the code only 
has to continue?

- What is 9010 and 9030?
- What do I have to do to 

introduce a further error case?



University of Wisconsin-Madison Engine Research Center
ERC Programming Seminar series – Madison, WI – Nov 27, 2013

slide 25

Self-commenting code
- the code self-comments itself
- Error codes are stored and saved as 

parameters in a safe place, e.g. 
subroutine header or in a module

- The compiler will interpret them as 
numbers, but we can read their meaning

- Optional screen output handled with a 
‘debug’ parameter � the compiler will 
just remove this lines during compilation 
if it is .FALSE.

- Easy to add handling for further error 
types

- We may put this into a subroutine if no 
special actions have to be taken



University of Wisconsin-Madison Engine Research Center
ERC Programming Seminar series – Madison, WI – Nov 27, 2013

slide 26

Do not duplicate code

� If a series of lines has to be copied and pasted it 
means that it is representing a task that can be 
included in a subroutine/function

� This may be slower at runtime due to overhead for 
calling the procedure, but let in-lining to be decided 
by the compiler (next week)

� Cannot change / add more instructions without
changing many parts of the code

� Code reusability is compromised

� Duplicating data multiplies the chances of errors



University of Wisconsin-Madison Engine Research Center
ERC Programming Seminar series – Madison, WI – Nov 27, 2013

slide 27

Do not duplicate code

� Never do any expensive calculation twice! ���� storage/retrieval 
is always faster on modern computing architectures that do 
not have tight memory bounds

� Never change more than one thing at the same time!

� Reading/writing data from/to disks is orders of magnitude 
slower than from/to memory

� Also screen output introduces interaction with the operating 
system ���� slow

� Always confine all I/O in very specific parts of the code

� Debugging I/O should be removed when not needed

Avoid scattered I/O



University of Wisconsin-Madison Engine Research Center
ERC Programming Seminar series – Madison, WI – Nov 27, 2013

slide 28

Avoid hardcoding
� Always think as everything in your code may have to be 

extended/modified at some point in the future

���� Never include numbers in the code, even if they are 

constants



University of Wisconsin-Madison Engine Research Center
ERC Programming Seminar series – Madison, WI – Nov 27, 2013

slide 29

Have totems, 
but do not stick to taboos

� Programming languages evolve pretty much as human 
languages do, to make communication simpler and 
more effective

� Complex programs always feature more than one 
programming language

Decide few simple guidelines,
and then use the most appropriate 

language for your needs



University of Wisconsin-Madison Engine Research Center
ERC Programming Seminar series – Madison, WI – Nov 27, 2013

slide 30

Read before doing!

� The Internet

http://fortranwiki.org

� Metcalf, Reid, Cohen – “Modern Fortran 
explained”, Oxford University Press

� Brainerd – “Guide to Fortran 2003 
Programming”, Springer



University of Wisconsin-Madison Engine Research Center
ERC Programming Seminar series – Madison, WI – Nov 27, 2013

slide 31

Questions? Example requests?


