Tips and tricks for good (and fast)
scientific programming, with and
introduction to parallel computing

1 - Basics

Lecturer: Federico Perini
Madison, 2013/11/27

slide 1 University of Wisconsin-Madison Engine Research Center

ERC Programming Seminar series — Madison, WI — Nov 27, 2013

Lecture series outline

1. Basics of good programming practice

= Tools for good and comfortable code development and maintenance
= Good programming practice

2. Optimization, Debugging and Profiling

= Compiler-based vs. manual optimization
= Debugging tools, with examples
= Finding and solving bottlenecks in the code

3. Parallel programming

= Different tools for different applications
= Examples of code parallelization with OpenMP and MPI

This schedule is open to changes upon requests!

slide 2 University of Wisconsin-Madison Engine Research Center

ERC Programming Seminar series — Madison, WI — Nov 27, 2013

Lecture 1 — the basics

1. What does it mean to build a program
2. The KISS principle
3. Necessary programming practices

4. Q&A

slide 3 University of Wisconsin-Madison Engine Research Center

ERC Programming Seminar series — Madison, WI — Nov 27, 2013

What is a program

slide 4 University of Wisconsin-Madison Engine Research Center

ERC Programming Seminar series — Madison, WI — Nov 27, 2013

What is a program

prbéraﬁ hello
implicit none Methods that operate on data structures

—

call say hi

return

data structures

contains

subroutine say hi()
character (len=*), parameter :: fmt hello = " ('Hello World!"')"
write(*, fmt hello)

end subroutine say hi

end program hello

slide 5 University of Wisconsin-Madison Engine Research Center

ERC Programming Seminar series — Madison, WI — Nov 27, 2013

\ B - 4
Building’ a program
= going from a set of source code files to an executable

1. Coding

» The process of writing source files containing the data structures and the
methods that operate on them for our particular purpose, in a specific
programming language syntax

2. Compiling
» The translation of the source code into machine language instructions

» Creates ‘object’ files or libraries (.0, .obj, .a, .dll, etc.) that are not
language-bound anymore

* Look at one source file at the time and check for syntax errors

3. Linking

« The generation of an executable file from multiple object files
» Look at the global program structure
» Check that all the required functions/libraries are defined in the object files

slide 6 University of Wisconsin-Madison Engine Research Center

ERC Programming Seminar series — Madison, WI — Nov 27, 2013

Programming philosophies

Different approaches to how do data structures and methods interact

H Procedural programming
« Task-oriented (subroutines, functions)
» Methods, tasks that operate on data structures of unknown
origin
e.g.: We want to calculate an injection velocity

function injection_velocity(diam,p_amb,p_inj,fuel_dens,cD)

real(8), intent(in) :: diam,p_amb,p_inj,fuel_dens,cD
real(8) :: injection_velocity

injection_velocity = ¢D * sqrt(2.2*(p_inj-p_amb)/fuel_dens)

end function injection_velocity

slide 7 University of Wisconsin-Madison Engine Research Center

ERC Programming Seminar series — Madison, WI — Nov 27, 2013

Programming philosophies

B Structured and object-oriented programming

« Objects (instances of classes) have
o Attributes (data)
o Associated procedures (methods)

 Methods and data structures are encapsulated
 Fortran: module/type/class

e.g.: We want to calculate an injection velocity

- An injection velocity is not of general usage, it only makes sense within a
certain representation of a fuel injector nozzle

- A fuel injector nozzle has some properties that are unique to that particular
class of objects, e.g., a hole diameter, an injection pressure, a position in space,
but whose values depend on the particular instance of that class, e.g. my PFI

@“ﬁﬂingector, your common rail injector, etc.

b
%
3

slide 8 University of Wisconsin-Madison Engine Research Center

ERC Programming Seminar series — Madison, WI — Nov 27, 2013

Programming philosophies

|module injector_module
implicit none

- Data are encapsulated in
= an ‘injector_nozzle'
R o 5 object
Cetil o g et e These are not modifiable
unless made available
through some interface
cet_geonetry - injector_nonte et geamerry TUNCEION, €.0.,

injection_velocity => injector_nozzle_velocity

end type injector_nozzle SEt_g eometry

real(8) :: rho_fuel

contains

slide 9 University of Wisconsin-Madison Engine Research Center

ERC Programming Seminar series — Madison, WI — Nov 27, 2013

Programming philosophies

subroutine injector_nozzle_constructor(this,d,p,rhol,x,y,z)

class(injector_nozzle), intent(inout) :: this
real(s) , intent(in) 23 dypsrbol,x,y,z . .

| We need to build our object,
g i.e., initialize its characteristic
this¥z = z

data properties
this¥diameter = d

this%injecfion_pr‘essure =p
this%rho_fuel = rhol

end subroutine injector_nozzle_constructor

function injector_nozzle_velocity(this,p_ambient) result(vmag)

class(injector_nozzle), intent(in) :: this Methods Operate Wlth these

real(8) , intent(in) :: p_ambient

:::igg;, parameter :: two = 2.d@ PSSR data WithOUt making them
discharge_coef = this¥discharge_coefficient(p_ambient) VlSlble to the OutSIde

vmag = discharge_coef &
* sqrt(two*(this¥injection_pressure-p_ambient)/this%rho_fuel)

end function injector_nozzle_velocity

@“ESEARC"

2
N
S

ey,

Ors

slide 10 University of Wisconsin-Madison Engine Research Center

ERC Programming Seminar series — Madison, WI — Nov 27, 2013

OF Wrscons"

Programming philosophies

program injector

After object creation, there is
il - e R G S no interaction anymore with
its encapsulated properties

type(injector_nozzle) :: my_nozzle
real(8) :: p_amb

read(myfile, *)diam,p_inj,rho_fuel,x,y,z

Suppose we want to

call my_nozzleXcreate nozzle(diam,p_inj,rhofuel,x,y,z) implement a new nozzle flow
model. We won't need to
change the whole program!
Changes will be confined to
the injector object

print *, my_nozzle¥injection_velocity(p_amb)

end program injector

Structured programming enhances maintainability and expandability,
but both philosophies are equally valid, as long as code is good code

slide 11 University of Wisconsin-Madison Engine Research Center

ERC Programming Seminar series — Madison, WI — Nov 27, 2013

How to begin

B Open-source Fortran compiler suite
http://gcc.gnu.org/wiki/GFortran
http://www.equation.com (Windows)
http:/ /finkproject.org, http://www.macports.org (Mac)

B Open-source IDE with Fortran support
http://www.codeblocks.org/

B Open-source MPI library
http:/ /www.mpich.org/downloads/

slide 12 University of Wisconsin-Madison Engine Research Center

ERC Programming Seminar series — Madison, WI — Nov 27, 2013

How to begin |
Customizable

B An IDE is structured in terms of Projects (plugins, scripts)

—

Handles
debugging
. Automatic
. makefiles
Syntax highlighting
Constant access to all and code completion Custom build
the source files = Including variables, methods
methods, classes
slide 13 University of Wisconsin-Madison Engine Research Center

ERC Programming Seminar series — Madison, WI — Nov 27, 2013

The KISS principle

slide 14 University of Wisconsin-Madison Engine Research Center

ERC Programming Seminar series — Madison, WI — Nov 27, 2013

the KISS principle

H Keep it simple, stupid

H Every construct should be

+ self-consistent: do not require unnecessary
information from the outside
o Just use variable input-output

« complete: perform all the requested operations in
the same subroutine/function

« single: do not perform more than one task in
every subroutine/function

slide 15 University of Wisconsin-Madison Engine Research Center

ERC Programming Seminar series — Madison, WI — Nov 27, 2013

the KISS principle

B See the code as a series of ‘black’ boxes that interact each other
(Modules or Classes can be very good boxes)

B Ideally, the data relevant to every module/class should only be
known within that module/class, and no data should be shared
among them, unless communicated through calls to public
functions/subroutines

set_crank_angle

set_piston_position

slide 16 University of Wisconsin-Madison Engine Research Center

ERC Programming Seminar series — Madison, WI — Nov 27, 2013

the KISS principle

B Every function/subroutine should not be

longer than one page

« We are not superheroes, handling long scripts that do not fit
the page (screen) is extremely prone to errors

KIVA squish layer snapper

snapb.f
e 1362 lines
e 18 pages (print)

slide 17 University of Wisconsin-Madison Engine Research Center

ERC Programming Seminar series — Madison, WI — Nov 27, 2013

the KISS principle

B If it is longer, probably there is some sub-
task that can be contained in a separate
construct

KIVA snapb.f

Find moving surface
Understand moving direction
Decide if a snap is needed
Add / remove a layer
Interpolate physical quantities

=» This would apply to any
moving surface in the domain!

slide 18 University of Wisconsin-Madison Engine Research Center

ERC Programming Seminar series — Madison, WI — Nov 27, 2013

Guidelines and tips for good
programming practice

slide 19 University of Wisconsin-Madison Engine Research Center

ERC Programming Seminar series — Madison, WI — Nov 27, 2013

Use meaningful names

B Stick to a suitable naming_convention, namingConvention

B Consistency between filename, contained modules and related type
structures, e.g.

polygons_mod.f90

module polygons_mod
implicit none

type, public :: polygons
.e'r.ld type

contains

en(.d“module polygons_mod

| The more descriptive the better CALL CKHTYW(X,Y,KB22,RWRK, IWRK,IPAR)

slide 20 University of Wisconsin-Madison Engine Research Center

ERC Programming Seminar series — Madison, WI — Nov 27, 2013

Use meaningful names

B
Use Logical Names

e Subroutine names
— newkiva.f
— hewnewkiva.f
— sortanewkiva.f

— newnewnewnewnewnewnewnewnewnewnewnew
newnewnewnewnewnewnewnewnewnewnewnew
newnewnewnewkiva.f

— kiva_v7-09.f (note: dates are unique)

« Making many changes and not sure if they
will be permanent? Copy a routine and give
it a ‘version’ name:

— newchem.f -> chem_cjr_v7-09.f
B

m Credit: prof. C.]J. Rutland, “"Notes on Programming”, 2009

slide 21 University of Wisconsin-Madison Engine Research Center

ERC Programming Seminar series — Madison, WI — Nov 27, 2013

Use comments

B At least 50% of the code should be occupied by
comments!

B Header comments

» Briefly describe what the routine / data structure is related to
Describe input/output/storage properties

List references to the algorithm

Keep track of subroutine changes and updates

B Comments within sections

» if constructs / do loops / etc.
« Comment what is being done

B Subroutine updates

. XVI:en changing something, always write down name of the coder and
ate

slide 22 University of Wisconsin-Madison Engine Research Center

ERC Programming Seminar series — Madison, WI — Nov 27, 2013

Use comments
B Example

I [FP] 1/1/1970
real(8), parameter :: pi = acos(-1.d0)

I [FP] 1/1/1970

| Hardcoded constant moved to parameters
I circ =2*3.14 * radius

circ =2 * pi * radius

slide 23 University of Wisconsin-Madison Engine Research Center

ERC Programming Seminar series — Madison, WI — Nov 27, 2013

Use comments

B Always label do/if/case constructs
B Use logical variables with meaningful names

=» The code should mimic a language’s semantic, and be
almost human-readable

ﬁo(;Gé.éql.(i;A?HEN - What is KGO?

- Where is the code jumping to
at any of these conditions?

- Why do we have to specify a
costly if clause if the code only
has to continue?

- What is 9010 and 90307?

it l e - What do I have to do to

introduce a further error case?

GO TO 30

ELSE IF (KGO.EQ.2) THEN

GO TO 60

ELSE IF (KGO.EQ.3) THEN

ELSE IF (KGO.EQ.4) THEN
WRITE (LOUT,9038) T
GO TO 60

ENDIH

« @ CONTINUE

slide 24 University of Wisconsin-Madison Engine Research Center

ERC Programming Seminar series — Madison, WI — Nov 27, 2013

Self-commenting code

subroutine integrator

the code self-comments itself
Error codes are stored and savedas @~ e

parameters in a safe place, e.g. Sughenl o ervor fupyeac

- » integer :: error a
subroutine header or in a module i =
The compiler will interpret them as NglEill; paciabtir <& Bkl s

numbers, but we can read their meaning

integer, parameter :: stiff_precision

Optional screen output handled with a il s -
‘debug’ parameter - the compiler will
just remove this lines during compilaton "
if it is .FALSE.
KGO = 1 - KFLAG

KFLAG
error_flag /=@

"

Easy to add handling for further error
types ity - TP

error_handling: if (error_happened) then

We may put this into a subroutine if no
special actions have to be taken

select case (error_flag)
case (stiff_precision)

if (debug) call print_warning(msgunit, 'Could not achieve precision after 1@ iterations')
exit step_loop

KGO = 1 - KFLAG

IF (KGO.EQ.1) THEN case (stiff_error_tol)
GO TO 3@ if (debug) call print_error(msgunit, 'Required tolerance smaller than achieveable')
exit

ELSE IF (KGO.EQ.2) THEN
case (stiff_step width)

GO TO 6@ - if (debug) call print_warning(msgunit, 'Could not achieve convergence at current step width®)
exit step_loop
ELSE IF (KGO.EQ.3) THEN

WRITE (LOUT,%@1@) T,H case default
GO TO 78 stop 'Something terribly wrong happened’
end select
ELSE IF (KGO.EQ.4) THEN
V I endif error_handling
WRITE (LOUT,%@38) T
GO TO 6@ s
ENDIH

CONTINUE

end subroutine integrator

Do not duplicate code

If a series of lines has to be copied and pasted it
means that it is representing a task that can be
included in a subroutine/function

This may be slower at runtime due to overhead for
calling the procedure, but let in-lining to be decided
by the compiler (next week)

Cannot change / add more instructions without
changing many parts of the code

Code reusability is compromised

Duplicating data multiplies the chances of errors

slide 26 University of Wisconsin-Madison Engine Research Center

ERC Programming Seminar series — Madison, WI — Nov 27, 2013

Do not duplicate code

Never do any expensive calculation twice! > storage/retrieval
is always faster on modern computing architectures that do
not have tight memory bounds

Never change more than one thing at the same time!

Avoid scattered I/0

Reading/writing data from/to disks is orders of magnitude
slower than from/to memory

Also screen output introduces interaction with the operating
system - slow

Always confine all I/0 in very specific parts of the code
Debugging I/0 should be removed when not needed

slide 27 University of Wisconsin-Madison Engine Research Center

ERC Programming Seminar series — Madison, WI — Nov 27, 2013

Avoid hardcoding

B Always think as everything in your code may have to be
extended/modified at some point in the future

- Never include numbers in the code, even if they are
constants

if (crank >= -65.3) then

do i=1,
inj mass(i) = dt * eff area * 820.1 * v_inj(i)
end do

endif

injection_timing: if (crank >= start_of_ injection) then
loop_over injectors: do i = 1, n_inj
inj mass(i) = dt * eff_area * fuel_dens * v_inj (1)
end do loop_over_ injectors

endif injection_timing

slide 28 University of Wisconsin-Madison Engine Research Center

ERC Programming Seminar series — Madison, WI — Nov 27, 2013

Have totems,
but do not stick to taboos

B Programming languages evolve pretty much as human
languages do, to make communication simpler and
more effective

B Complex programs always feature more than one
programming language

Decide few simple guidelines,
and then use the most appropriate
language for your needs

slide 29 University of Wisconsin-Madison Engine Research Center

ERC Programming Seminar series — Madison, WI — Nov 27, 2013

Read before doing!

H The Internet
http://fortranwiki.org

B Metcalf, Reid, Cohen — "Modern Fortran
explained”, Oxford University Press

B Brainerd — “Guide to Fortran 2003
Programming”, Springer

ESEARC,,

_; slide 30 University of Wisconsin-Madison Engine Research Center

ERC Programming Seminar series — Madison, WI — Nov 27, 2013

Questions? Example requests?

slide 31 University of Wisconsin-Madison Engine Research Center

ERC Programming Seminar series — Madison, WI — Nov 27, 2013

