ERC Seminar series

Automated CFD Meshing with focus on Internal Combustion Engines

Federico Perini, Ph.D.

UW-Madison, Madison, WI June 14th, 2024

About me

- MSc, Ph.D. Engines Modena, Italy
- Post-Doc UW
- Consultant at WERC
- Working on FRESCO, my combustion CFD code

About FRESCO

□ <u>FRESCO</u>: Unstructured, parallel CFD solver with body-fitted mesh □ fast detailed chemistry thanks to Sparse Analytical Jacobians

FRESCO setup			
Mesh	Body-fitted sector		
Time accuracy	$O(\Delta t)$ implicit (diffusion) / explicit (advection, CFL=0.2)		
Finite Volumes	$O(\Delta x^2)$ – diffusion w/ exact Jac., $O(\Delta x)$ – advection (Upwind, minmod)		
Parallelism	MPI (cpu), OpenCL (gpu)		
Chemistry	direct, Sparse Analytical Jacobian (SpeedCHEM-II)		
Combustion	G-Equation with detailed chemistry		
Turbulence	Generalized re-normalization group (GRNG) k-a		
Spray	Dynamic Blob, KH-RT, gas-jet SGS, extended collisions, 1D multicomponent vaporization		

$$\begin{cases} \frac{\partial Y_i}{\partial t} = \frac{\dot{\omega}_i W_i}{\rho} - \frac{1}{\tau} (Y_i - Y_i^*), & i = 1, \dots, n_s \\ \frac{\partial T}{\partial t} = \frac{1}{c_v} \left[\frac{\dot{Q}}{V} - \sum_{i=1}^{n_s} \frac{U_i \dot{Y}_i}{W_i} + \frac{1}{\tau} \sum_{i=1}^{n_s} Y_i^* (U_i^* - U_i) \right]. \end{cases}$$

About FRESCO

Sprays / Turbulence

4

Friday wisdom

"I didn't fail 1000 times. The light bulb was an invention with 1000 steps."

T.A. Edison

What makes for a great mesh?

- → Body-Fitted
- → Prismatic wall layers
- → Mostly Hexahedra
- → Solution-Adaptive
- → Real-Time
- → Automated
- → Good cell aspect ratio
- → Moving

- → Boundary Layer accuracy
- → Boundary Layer accuracy
- \rightarrow Solution stability, accuracy
- → Optimal turnaround time
- → Reduce user time
- → Reduce user time
- \rightarrow Solution stability, accuracy
- → Real-world cases

Mesh Level-set

Finite-volume representation of the distance from the wall:

$$G(\mathbf{x}) = \begin{cases} G(\mathbf{x}) = \mathbf{0} & \text{at walls} \\ |\nabla G(\mathbf{x})| = \mathbf{1} & \forall \mathbf{x} \end{cases}$$

- Classify cells that contain a surface
- Works with any background mesh
- For a surface mesh, the Signed Distance Function (SDF) is used

Real-time mesh with the SDF

Create a "Marching Cubes*" method for volume meshing

- 3 node states:

- 00 → G<0 ("low")
- 01 \rightarrow G=0 ("iso")
- 11 → G>0 ("high")
- LUT configurations:
 - $3^8 = 6561$ Hexa
 - 3⁶ = 729 Prism
 - 3⁵ = 243 Pyramid

*Lorensen, Cline 1987

• $3^4 = 81$ Tet

SDF-Trimmed Mesh: advantages

- \checkmark Real-time
- \checkmark Conformal unstructured

SDF-Trimmed Mesh: advantages

\checkmark Handle motion easily

SDF-Trimmed Mesh: advantages

- \checkmark Smooth surface optimization / piston design
- \checkmark Parameterized surface extraction
- X But...

SDF-Trimmed Mesh for SI combustion

SDF-Trimmed Mesh:issues

- Sharp features are not well resolved
- Unless insanely large numbers of cells are used
- ↓ Sharp surface **1** Smooth surface Automated Meshing Seminar

ated Mesning Seminar June 14, 2024

SDF-Trimmed Mesh: issues

- MC uses a <u>linear</u> field approximation inside the cell
- Impossible to capture sub-grid features without additional refinement

SDF-Trimmed Mesh: issues

- MC uses a <u>linear</u> field approximation inside the cell
- Impossible to capture sub-grid features without additional refinement

SDF-Trimmed Mesh: issues

- MC uses a <u>linear</u> field approximation inside the cell
- Impossible to capture sub-grid features without additional refinement

Split table approach for AMR

Marching Cubes but for AMR

- Now split:
 - 12 edges
 - 6 faces
 - 1 cell center
- LUT configurations:
 - $2^{18} = 262,143$
 - Hexa only

Jaillet, Lobos 2021

SDF- or surface-based refinement

- A conformal, unstructured mesh at all times

- Sinusoidal AMR region sizing

Cut-cell generation

Hashed Mesh-Surface Intersections

Mesh edges \rightarrow BC faces

Floating point intersections

GPUs are useful, but not perfect

June 14, 2024

Automated Meshing Seminar * Average results over 5 tests per mesh

Generate hybrid edges

Intersection points from the same face generate constraint edges...

Constrained Delaunay Triangulation

Merge Interior Patches

- For each cut-cell, collect face CDTs
- Flag Mesh-Inside-Surface: Connectivity? Or SDF

Patch Surface Boundary

Extract BC mesh subset

Patch Surface Boundary

Flag Surface-Inside-Cell: Connectivity? Or SDF

Cut-cell assembly

Assemble faces

Merge face triangles \rightarrow Polygons

Cut 'n' stitch: what can possibly go wrong?

- Surface is manifold if no free boundaries
- 2 types of degeneracies through edge connectivity

Cut `n' stitch: examples

- "Cut" duplicate all non-manifold edges \rightarrow create holes
- Stitch" Merge them back, then remove leftovers
- "Fill Holes" close remaining open boundaries

Domain	Stanford bunny
# cells	112,400
# tri	100,000
Δx	5.0mm

Stanford bunny

 ✓ Test large deviations between surface and mesh resolution

- 2 cells
- 922 points

Domain	Stanford Dragon
# cells	98,174
# tri	100,000
Δx	0.5mm

Stanford Dragon ✓ Robust w.r.t. selfintersecting triangles

Domain	ORNL LNF
# cells	1,344,304
# tri	24,230
Δx	0.7mm

GDI cylinder

- ✓ Background O-grid mesh
- ✓ O-grid valve regions
- \checkmark Head and crevice refinement

Domain	UM TCC	UM TCC Engine
# cells	271,848	
# tri	27,342	triangle intersections
Δx	3.0mm	

M

Automated Meshing Seminar June 14, 2024

Domain	SNL Light-duty
# cells	112,855
# tri	146,844
Δx	1.0 cm

✓ 18 surfaces

X Y

Automated Meshing Seminar June 14, 2024

- 1.8e+0 - 16 - 14 - 12 - 10 - 8 - 6 - 4

1.0e+0

Domain	Stanford bunny
# cells	203,956
# tri	112,412
Δx	4.0 mm

unstructured tet mesh

✓ 6 tets per hexahedron

Domain	SNL Medium-duty
# cells	6,848
# tri	98
Δx	1.0 mm

2D planar/sector cases

Domain	SNL Medium-duty
# cells	178,048
# tri	2,548
Δx	1.0 mm

...2.5D cases

- ✓ Prismatic layers at the liner
- ✓ Arbitrary feature lines on the cylinder head

CPU times comparison (Apple M1, 8CPU, on battery)

[s]	# cells	Intersect	Mesh faces	BC faces	Assemble	Total
Bunny #1	112k	1.11	0.13	0.26	0.23	1.73
LNF cylinder	1.3M	4.80	1.34	1.26	2.80	10.2
Dragon	98k	2.49	0.28	0.24	0.25	3.26
TCC Engine	272k	2.09	0.57	0.78	0.85	4.29
SNL LD	112k	3.16	0.57	0.70	0.59	5.02
Bunny+Tets	204k	2.09	0.27	0.60	0.53	3.49
Engine Sector	178k	0.32	0.07	0.03	0.18	0.6

Onward

- Enable combined AMR + Cut-Cell operation
- Cut-cell update on moving boundary
- Extend FV solver to cut-cells

Thank you!

