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Abstract 

Appropriate spray modeling in multidimensional simulations of 
diesel engines is well known to affect the overall accuracy of 
the results. More and more accurate models are being 
developed to deal with drop dynamics, breakup, collisions, and 
vaporization/multiphase processes; the latter ones being the 
most computationally demanding. In fact, in parallel 
calculations, the droplets occupy a physical region of the in-
cylinder domain, which is generally very different than the 
topology-driven finite-volume mesh decomposition. This makes 
the CPU decomposition of the spray cloud severely uneven 
when many CPUs are employed, yielding poor parallel 
performance of the spray computation. Furthermore, mesh-
independent models such as collision calculations require 
checking of each possible droplet pair, which leads to a 
practically intractable O(np

2/2) computational cost, np being the 
total number of droplets in the spray cloud, and additional 
overhead for parallel communications. This problem is usually 
overcome by employing O’Rourke’s same-cell collision 
condition, which, however, introduces severe mesh 
dependency. In this work, we introduced two strategies to 
achieve optimal load balancing for fast spray calculations with 
mesh-independent models. Both methods were implemented 
in the FRESCO CFD code. For drop collisions, a mesh-
independent collision detection algorithm with high parallel 
efficiency was developed. This method pre-sorts eligible 
collision pairs using a high-performance three-dimensional 
clustering algorithm similar to what is used for on-the-fly 
chemistry model reduction; these are then filtered again based 
on deterministic impact parameters and assembled in parallel 
into a global sparse adjacency structure. For the particle-in-cell 
vaporization/multiphase solver, we developed a solution-
preserving load balancing algorithm. At each timestep, the 
parallel cell-ownership-based spray cloud structure is re-sorted 
into cell-owner bins, which are used to distribute the spray 
parcels across all CPUs along with their cell thermodynamic 
states; the distributed solution results are then sent back to the 
cell owners. The combination of both methods achieved more 
than one order of magnitude speed-up in spray solution for 
diesel engine simulations with a full and sector cylinder 
geometry. 

Introduction 

Lagrangian particle modeling using the Lagrangian-
Drop/Eulerian Fluid (LDEF) method [1] represents a critical 
boundary condition in the multidimensional modeling chain of 
direct-injection engines, as spray drop scales are orders of 
magnitude smaller than one’s engine multidimensional grid. 
Eulerian fluid modelling in the cylinder is not feasible when the 
engine scale is of interest, and Lagrangian trackers 
representing liquid parcels or drop distributions are preferred. 
Lagrangian parcels act as moving boundary conditions to the 
Eulerian CFD solver, as mass, energy, and momentum are 
transferred to the Eulerian phase as source terms due to spray 
in the Navier-Stokes equations [2]. Achieving an accurate 
representation of the liquid phase in terms of both size and 
momentum distributions is hence necessary to achieve a good 
representation of gas-phase fuel-air mixing and combustion in 
the engine.  

In the recent past models have been developed to improve 
several aspects of the computational representation of the 
Lagrangian spray cloud: for breakup [3], injection and drop 
dynamics [4, 5], drop-to-drop collisions and their outcomes [6, 
7], and vaporization [8, 9]. These models address deficiencies 
in both physical modeling and the computational 
implementation; the latter efforts being mainly devoted at 
reducing the dependency of the aforementioned algorithms on 
the local mesh size and structure. 

All these models increase the computational burden of the 
Lagrangian spray calculation; and, as they have not been 
developed with execution on parallel computers in mind, they 
typically do not scale well in parallel on many CPUs. In this work, 
we tackle the parallel scaling of spray algorithms, and develop 
methods for the efficient scalability of previously developed 
vaporization and mesh-independent collision methods [5]. For 
vaporization/multiphase source terms, we develop a solution-
preserving method. Their calculation depends on the whole set 
of particles inside one computational cell and its local 
thermodynamic state. Therefore, a greedy algorithm for load-
balancing of the vaporization solver, based on solution “bins”, 
was developed to scatter drops and their gas-phase cell owners 
across the CPUs. Each bin contains both one cell’s field and 
geometry information and all drops inside of it. In this way, the 
owner cell composition is sequentially updated in the same way 
as in the serial solver, and an identical solution is achieved as 
with the serial case.  

For collisions, we developed a parallel method for mesh-
independent estimation of eligible drop-to-drop collision pairs in 
the whole mesh. The whole spray structure is copied onto each 
CPU; and a high-performance three-dimensional (3d) 
clustering algorithm [10] is run to pre-sort eligible collision pairs 
based on previously assessed eligibility conditions [5]. 
Additional filtering based on a deterministic impact parameter 
is applied, and all eligible collision pairs are eventually stored 
into a parallel, lower-triangular sparse adjacency structure, 
achieving a fast, parallel, and mesh-independent collision 
solution.  

The new load balancing algorithms were assessed against two 
well-suited diesel engine simulation setups: one features a 
conventional diesel combustion (CDC) operating point with a 
near-TDC pilot-main injection strategy, and is run with a full 
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engine cylinder model and all injector nozzle holes; another 
features a sector mesh representation and an Reactivity-
Controlled Compression Ignition (RCCI)-like single injection 
pulse, early during the compression stroke, with a longer liquid 
phase lifetime. Both cases highlighted the capability of the two 
load balancing methods to achieve more than one order of 
magnitude speed-up for the spray solution when compounded. 

Numerical setup 

The FRESCO CFD simulation platform was employed to model 
the engine. The code implements an unstructured, parallel 
volume-of-fluid solver for the Navier-Stokes equations with 
automatic domain decomposition for boundary-fitted variable-
topology meshes. More details about FRESCO are given in 
[11]. Turbulence is modeled using a generalized re-
normalization group (GRNG) turbulence closure model that 
has been validated with engine flows, as well as for impinging 
and reacting jets [12]. Fuel injection and spray phenomena are 
modeled with a Lagrangian-Droplet/Eulerian-Fluid (LDEF) 
approach. Table 1 is a summary of the sub-models used to 
simulate turbulence and sprays for the current simulations. 

Table 1. Computational model setup employed for the current study. 

Phenomenon Sub-model 

Turbulence 
Generalized re-normalization group 
(GRNG) k-ε [13, 12] 

Injection Blob model with dynamic blob allocation [5] 

Spray angle Reitz and Bracco [14] 

Spray breakup 
Hybrid KH-RT instability, Beale and Reitz 
[3]  

Near-nozzle flow 
Unsteady gas-jet model with implicit 
momentum coupling [5] 

Drop drag Analytical with Mach number effects [5] 

Droplet collision 

Deterministic impact; bounce, coalescence, 
reflexive separation, and stretching 
separation [6]; dynamic radius of influence 
[5] 

Evaporation 1D discrete multi-component fuel [8] 

Piston 
compressibility 

Static, Perini et al. [15] 

 

Parallel Collision Detection algorithm 

Grid-independent collision model. Droplet collision physics are 
modelled using a deterministic impact parameter and extended 
collision outcomes [6], and a mesh-independent radius-of-
influence (ROI) based collision detection algorithm is employed 
[5]. The ROI model was developed to simplify the 
computational burden of collision detection estimates. In 
general, collisions may occur between any pair of 
computational parcels in the computational domain, yielding a 
computational cost O(np

2). As the number of parcels can grow 
rapidly during injection (up to np > 105 if a multi-hole injector is 
employed), this cost quickly becomes too high. In the ROI 
model, a ‘region of influence’ concept is introduced to define a 

spatial region surrounding each droplet, where no collisions 
can take place outside of its reach. This region was originally 
defined as a fixed radius in [16], and later extended with the 
tetrahedralization model in [5]. The radius of influence is 
assumed to be equivalent to the radius of a sphere with the 
same volume as that of the physical region containing all Np 
drops in a computational parcel’s drop distribution. As 
represented in two dimensions in Figure 1, all Np drops in the 
parcel are assumed to be equally spaced, hence located such 
that they form an exact tetrahedralization. A user-defined 
liquid/gas volume fraction parameter is employed: 

�� = ��/��,  (1) 

where dc represents center-to-center distance of neighbor 
drops, and rp the drop radius. This parameter was assumed to 
be constant and equal to kV=10 as it provided a Pareto-optimal 
tradeoff between number of modeled collisions and 
computational cost [5]; though being an approximation, this 
approach does not rely on the local grid features and is thus 
fully mesh-independent. Furthermore, as recent research is 
enabling fast multi-phase liquid-vapor volume fraction 
calculations [17], future efforts will be able to include more 
realistic estimates of the parcel’s cloud volume based on the 
local thermodynamic conditions.  

 
Figure 1. Tetrahedralized representation of drop-in-parcel distribution. 

The tetrahedralized drop-in-parcel representation provides a 
fast, analytical formulation for the volume-of-influence (VOIp) of 
the computational parcel, which is then equaled to a ROI as 

	
�� =  �
�� �
����/�

. (2) 

The availability of an ROI estimate for each parcel is needed to 
estimate a number of collisions between parcel pairs: 
according to O’Rourke [18], the probable number of drop-to-
drop collisions in a parcel-to-parcel collision event, where the 
parcels are denoted as S (having smaller drops) and L (having 
larger drops), is: 

���� = �
�

����������� 
!����!���

|#$ − #&|,  (3) 

where θθθθS and θθθθL represent parcel velocity vectors. This formula 
is at the basis of the widely used, conventional ‘same-cell’ 
O’Rourke collision approach [18]: there, same-cell filtering was 
employed to avoid any expensive spatial search. However, this 

prpVc rkd =
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algorithm has been widely known to introduce severe grid 
dependency and produce inaccurate results with non-physical 
spray structures [7].  

To mitigate the O(np
2) cost of estimating all potential collision 

pairs, we employ a two-staged parabola-function-based pre-
filtering strategy to rule out all collisions which cannot be 
possible according to the local collision geometry. First, a pre-
screening based on a simple geometric overlap condition is 
evaluated, as represented in Figure 2: 

'()&�*+�, )$�*+�- . 	
�& / Δ* #&, (4) 

i.e., all parcel pairs far enough from each other that their 
spheres cannot physically overlap during one timestep are 
immediately discarded. This initial search is made O(np log np) 
by employing a kd-tree data structure, while the rest of the 
search is again O(np

2). In practice, the initial screening 
dramatically reduces the number of eligible collision pairs, 
making the second stage viable and fast. During the second 
stage, the instantaneous squared distance between two 
computational parcels during a time-step is estimated as a 
parabolic function:  

'2�)$�*+�, )&�*+�, *� = 34*2 / 35* / 3�,  (5) 

where  

34 = ‖#$ − #&‖2,  
35 = 2〈)$�*+� − )&�*+�, #$ − #&〉,  
3� = ‖)$�*+� − )&�*+�‖2. (6) 

By exploiting the analytical features of this parabolic function, it 
is possible to compute a minimum distance dmin and a 
minimum-distance-time, tmin, which computes when the two 
parcels, with these velocities and initial locations, will be 
closest to each other, and how much that distance is. Based 
on these metrics, collisions are deemed impossible for those 
parcel pairs where:  

35 ; 0, *=>+ ? 0, → moving far away from each other;  

'=>+2 ; �	
�$ / 	
�&�2, → never close enough to collide;  

*=>+ @ Δ*, → too far to collide during current step. 
 (7) 

Once a restricted set of eligible collision pairs is eventually 
found, the individual collision probabilities and the 
corresponding collision outcomes are based on the local 
impact parameter b (Figure 3), collisional Weber number Wec, 

and drop diameter ratio ∆: 

A = sin E = F1 − 〈#HI#J,)��KL�I)H�KL�〉
‖#HI#J‖ ⋅‖)��KL�I)H�KL�‖ ,  

NO� = P�Q�R�P�Q�R
Q�R�Q�R

‖#$ − #&‖2 Q�
S ,  

Δ = T$/T&, (8) 

where ρ represents liquid density, σ the surface tension, and β 
the relative impact angle as represented in Figure 3.  

 
Figure 2. Schematic of ROI-based collision eligibility estimation. 

 
Figure 3. Deterministic collision impact parameter evaluation. 

Parallel collision algorithm. Despite the sequential filtering 
operations, collision eligibility estimation can still take a 
relevant amount of CPU time in real-world scenarios, for 
example, in full engine simulations where multiple injector 
nozzles are present and the total number of drops is of the 
order of a few hundred thousand. Also, in parallel simulations, 
when collisions can happen across CPUs, the same algorithm 
with the global spray cloud data has to be solved identically on 
each CPU, making for a very inefficient and actually non-
parallel usage of the multiple CPUs. Hence, a parallel 
algorithm can further speed-up collision eligibility detection. 

Instead of evaluating binary collision eligibility for each collision 
pair, a collision detection adjacency matrix is built first. With no 
pre-processing of the eligible collision pairs according to the 
two-stage procedure outlined in the previous section, the 
matrix would be fully symmetric, which would render its storage 
as a matrix object unfeasible due to memory constraints. 
However, in practice, the filtering procedure leads to a highly 
sparse structure, because only parcels sufficiently close to 
each other can actually collide. Hence, a sparse, square, 

symmetric structure was employed. It has size (np × np), and its 
sparsity represents the graph of eligible collision pairs. The 
structure of this matrix is represented in Figure 4. In our 
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implementation, the object-oriented Compressed Sparse Row 
(CSR) class is employed [19].  

Similar to the non-parallel procedure, the algorithm starts from 
a parallel gather of the whole spray cloud structure (parcel 
locations, velocities, and ROIs). 

 
Figure 4. Parallel collision eligibility matrix structure. 

Then:  

1) A kd-tree clustering procedure is applied to the whole 
spray cloud according to the algorithm of [10], with a 
final bucket size equal to the maximum parcel ROI in 
the spray cloud. As a result, all parcels are clustered 
into buckets, sufficiently close to each other, 
achieving ROI-based grouping similar to the case 
represented in Figure 2. This accounts for a first 
filtering of the eligible collision pairs: parcels not 
inside the same bucket are not considered for 
collision. As this operation is fast and requires full 
knowledge of the tree structure, it is run identically on 
each CPU. 

2) Second, the parallel part of the algorithm is run. To 
maximize parallel scalability, the workload for building 
the collision detection matrix is partitioned by rows. At 
the end of the procedure, each CPU must have a 
whole copy of the matrix. Hence, there is no need for 
complex CPU partitioning: each CPU will process 
approximately the same number of buckets based on 
an even distribution.  

3) For all parcels in each bucket, the collision eligibility 
constraints of Equation 7 are evaluated, and eligible 
pairs are stored as nodes of the lower sparse 
adjacency graph.  

4) After each CPU has processed all rows of its buckets, 
its horizontal band of the matrix is ready; a final global 
data gathering is the last operation needed to 
reconstruct the whole matrix on each CPU. 
 

Parallel Vaporization Load-Balancing 

In the FRESCO code, the spray solution is intrinsically parallel: 
the code’s approach is to store the computational parcels on 
the CPU that owns the cells that contain them. From a coding 
standpoint, this is convenient, as the solution to the parcel 
equations and the spray sub-models always requires 
knowledge of the gas-phase thermodynamic and turbulence 
properties surrounding them, so, no parallel communications 
are involved when solving for Lagrangian-related terms. 
However, this approach carries over an intrinsically severe 
computational efficiency drawback: if the drop cloud is 
geometrically located in a few compact regions of the domain, 
then only a few CPUs will contain the majority of the parcels – 
those where most of the dense spray core is located – leading 
to poor load balancing.  

Among the Lagrangian models, vaporization plays the most 
important role, especially in FRESCO, where complex physics 
with multicomponent fuels and an internal 1D drop 
discretization [8], or a full multiphase solver, are available.  

The spray vaporization algorithm is not an “embarrassingly” 
parallel problem, i.e., a problem where the solution to each 
individual component is completely independent of any others. 
In fact, following the method of [2], vaporization of all spray 
drops is solved sequentially, as represented in Figure 5. After 
each parcel lying inside a cell is solved for its vaporization rate, 
the cell’s gas-phase properties are sequentially updated before 
solving for the next parcel. This introduces dependency of the 
vaporization algorithm on the order the parcels are fed to the 
vaporization algorithm: if a parcel is being vaporized after 
several other ones, its vaporization rate would likely be slower 
than if it was vaporized first, since the gas-phase has already 
received much fuel vapor, and underwent significant cooling 
from the vaporization of the previous parcels. Hence, a parallel 
vaporization algorithm must take this concept into account. If 
each drop was solved for independently, as represented in 
Figure 5 (below), all drops in a same cell would be ‘first’, and a 
greater vaporization rate would be predicted. Also, the results 
from a parallel solution would be different than those from a 
single-CPU one. 

 

Figure 5. Schematic of sequential vs. parallel drop vaporization 
solution. (top) sequential: the vaporized amount of next drops is 
affected by already-vaporized fuel from the previous drops; (bottom) 
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parallel: each drop’s vaporization rate responds to a ‘scratch’ 
underlying gas phase state. 

To overcome this issue, we introduce the idea of ‘buckets’. A 
bucket is a data structure which contains one cell’s gas phase, 
and all drops geometrically within it. So, the vaporization 
solution within each bucket will be identical regardless of the 
CPU it is being solved upon. A bucket-based greedy algorithm 
for load balancing was hence developed to maximize parallel 
efficiency while not affecting the sequential parcel-in-cell 
solution constraint. To atychieve identical solution results 
between the serial and the parallel cases, the greedy algorithm 
starts by binning all parcels into buckets by cell ownership, as 
represented in Figure 6: each bucket contains all parcels in the 
same computational cell. Within each bucket, parcels are 
sorted for increasing drop radius, such that the smallest-drop 
distributions (which have the shortest timescales) will be 
solved for vaporization first. The target number of parcels per 
CPU is the algebraic average:  

��UUU = �
VWXY

∑ ��,>
VWXY
> . (9) 

 
Figure 6. Greedy algorithm bucket redistribution for a randomly-

sampled set with 10,000 parcels in 16 CPUs. (Top) before 
redistribution; (bottom) after redistribution. Dashed line: target size; 

colors: initial CPU owner. 

At each greedy iteration, those CPUs still having more than the 
target number of parcels will re-distribute one or more buckets 
to other CPUs that have less than the target. As any greedy 
algorithms, the procedure stops when the best redistribution 
operation at any iteration count would ‘make things worse’, i.e., 
would cause the final number of parcels in any CPUs to be 
farther from the target than the current distribution.  

Figure 6 represents the results of the greedy redistribution from 
a randomly sampled set of 10,000 parcels scattered across 16 
CPUs; Figure 7 represents redistribution from a randomly 
sampled set of  150,000 parcels across 64 CPUs. In both 
figures, the original bucket CPU is represented by color. Note 
that each CPU is either a sender or a receiver based on its 
initial number of parcels; its state cannot be mixed and cannot 
change during the iterations. This constraint is actually needed 
for the vaporization parallel load balancing, as the memory 
range above the currently stored parcels is used as temporary 
storage for the parcels being received. If a CPU was both a 
sender and a receiver, memory would be overwritten causing 
information loss, while using a specific additional memory 
allocation would render the algorithm less efficient, both CPU- 
and memory-wise. 

The greedy algorithm defines the optimal drop distribution such 
that all parcels-in-cell are kept together, and the number of 
drops solved on each CPU is as close as possible to being 
even. The implementation also includes data structures and 
methods to communicate these pieces of information across 
the CPUs: 

 
Figure 7. Greedy algorithm bucket redistribution for a randomly-
sampled set with 150,000 parcels across 64 CPUs. (Top) before 

redistribution; (bottom) after redistribution. Dashed line: target size; 
colors: initial CPU owner. Each CPU is either a sender or receiver. 

1) The optimal bucket distribution is computed by the 
greedy algorithm; 

2) Sparse adjacency structures for data exchange of 
both parcel and gas-phase data across CPUs are 
created and temporary storage is allocated; 

3) Data is transferred using MPI non-blocking 
communications;  
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4) Vaporization rates for all local parcels are computed; 
5) Information is sent back to the actual CPU owners: 

updated drop size, internal distribution, composition 
and temperature; and species mass and energy 
exchanged with the gas phase; 

6) Cell source terms are updated back on the actual 
CPU owners; 

7) Temporary storage is deallocated. 

It should be noted that the current algorithm minimizes the gas-
phase cell status information having to be exchanged through 
the network, as each set of parcels being sent is clustered, so 
gas-phase information about each cell does not have to be 
duplicated. Finally, the mesh-independent form of FRESCO’s 
Lagrangian source terms (Figure 8) is enforced: during the 
solution of each parcel-in-bucket, only the volume fraction of 
the vaporized amount, corresponding to its geometric parcel-
cell overlap volume, is actually used to update the bucket cell’s 
gas phase composition. The full Eulerian source term field is 
computed at the end, after the vaporization rates from all 
parcels are available. 

 
Figure 8. Comparison of (left) KIVA-like [2] vs. FRESCO’s mesh 
independent Lagrangian source term calculation approaches. 

Results and discussion 

Two Diesel engine simulation test cases were run to assess 
the computational efficiency of both collision and vaporization 
load balancing methods. The first test case features a 
conventional Diesel combustion strategy, featuring relatively 
short-lived liquid spray clouds close to TDC, and uses a full 
engine mesh with 7 nozzle holes, hence with a relatively well 
distributed spatial occupation of the spray jets. The second one 
employs a sector mesh, and features a single-pulse early 
diesel RCCI injection, which has longer lifetime and worse 
usage of the cylinder sector volume. For both of them, 24-case 
simulation sweeps were run to systematically analyze the 
behavior of both submodels and the impact of the number of 
computational parcels in the spray cloud on them:  

• Collision detection method - 3 methods were used: 
- O’Rourke’s same-cell collision detection method 

(“ORK”) [18];  
- Parabola-based pre-filtering method, operated on the 

full spray cloud (“PAR”) [5]; 
- Parallel kd-tree based cloud clustering method, 

followed by parabola-based pre-filtering (“KDT”) – 
current work; 

• Vaporization solution method: 
- With no load balancing; 
- With greedy load balancing – current work; 

• Number of injected parcels: 

- Variable, according to full blob model [5] 
- Fixed, Np = 2000, 5000, 10000 per nozzle 

Two pulse Diesel spray injection case (CDC9). The Sandia 
optical diesel engine platform was used as the first test case. A 
full engine geometry model was used, which includes the 
intake and exhaust ports and runners up to the surge tanks in 
the optical facility. The optical piston featured a stepped-lip 
bowl design (See [21, 22]). Engine data is summarized in 
Table 2 [23]. The model uses an unstructured, body-fitted 
hexahedral mesh with 724,000 cells at bottom dead center. 
The mesh is depicted in Figure 9. Details of the engine’s 7-hole 
injector are given in Table 2. Spray targeting in the simulation 
matches the spray targeting used in corresponding engine 
experiments: both spray targeting and measured injection rate 
profiles are available on the ECN website [25]. The engine 
operating point represents a part-load (9 bar IMEP), 
conventional diesel combustion strategy (CDC9) with a split 
pilot-main injection strategy, with the main pulse’s SOI 
approximately at TDC. Injection takes place in a non-reacting 
environment with 100% N2, as the experimental results have 
been evaluated using fuel tracer planar laser-induced 
fluorescence (PLIF) images. All simulations for this case were 
performed on the same node equipped with 48 CPUs, from -20 
deg aTDC to +40 deg aTDC. 

 

 
Figure 9. Cylinder detail of the full-engine CFD mesh used for the 

engine spray calculation. 
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Table 2: Engine and fuel injector geometry data 

Bore 82.0 mm 

Stroke 90.4 mm 

Connecting rod length 166.7 mm 

Squish height 1.36 mm 

Geometric compression ratio 15.8 : 1 

Injector nozzle holes x diameter 7 x 139 µm 

Nozzle hole conicity (ks) 1.5 

Injector opening angle 149° 

 
RCCI simulation. The second validation test case featured a 
different configuration, with a sector mesh model (Figure 10) 
and an early Diesel injection pulse. The testcase mimicked an 
RCCI-like injection pulse in the same engine, equipped with an 
RCCI piston [26], and modeled using a sector mesh approach. 
The choice of an RCCI operating point was motivated by the 
need to assess computational efficiency at the upper end of 
the liquid fuel’s lifetime range: this leads to more parcels and 
more complex collision and vaporization scenarios than in 
near-TDC injections. The sector mesh has 74,000 cells at 
bottom dead center. A single injection pulse, from -60 to -53.35 
deg aTDC, was modeled using the CRI2.2 rate of injection 
model of [27]. A single-component fuel model using n-
dodecane as the physical surrogate for vaporization was 
employed. Simulations for each tested setup were run on the 
same single node with 20 CPUs, with total simulation times 
ranging from 1h17’ to 1h50’. 

 
Figure 10. View of the computational mesh employed for the RCCI 
calculation at -20 degrees aTDC.  

Collision model impact 

CDC9 simulation. The number of instantaneous parcels alive 
during a conventional diesel combustion case is relatively low, 
as the time histories of parcel count show in Figure 11. All 
curves exhibit two separate events with a first, low peak slightly 
earlier than TDC due to the pilot injection, and a bi-modal 
distribution during the main injection with two peaks: one 
shortly after SOImain, and one close to EOImain. In all cases, the 
parcel count quickly decays after the end of injection. Choice of 
the collision method significantly affected the parcel count. The 
O’Rourke (ORK) model consistently exhibited lower parcel 
numbers than the parabola (PAR) and kd-tree (KDT) methods, 
which instead showed very similar parcel histories. This 

suggests that the kd-tree method does not significantly change 
the collision detection matrix. With KDT, collisions can only 
take place with other parcels from the same cluster; hence, the 
kd-tree based parallel clustering produced accurate partitions 
of the spray cloud. All models showed consistent behavior with 
different numbers of injected parcels, with greater parcel 
numbers when more parcels were injected.  

In the O’Rourke model, a slightly lower number of 
instantaneous in-cylinder parcels was observed. As shown in 
Figure 12, this did not affect the spray structure significantly, as 
no meaningful differences could be observed in the main jets 
with any of the collision detection methods. However, as a 
drawback, that would affect CPU time dramatically. As all 
same-cell parcels are forced to be eligible for collisions 
regardless of the collision geometry, the number of simulated 
collisions with the O’Rourke model is significantly higher than 
with the mesh-independent models, such as reported in Figure 
13. With 10,000 injected parcels, the O’Rourke method 
simulated slightly more than 840,000 collisions, as opposed to 
202,000 for the parabola method, and just 52,000 for the kd-
tree based method. It should be noted that the parabola 
method provides an exact filtering of the eligible collisions 
based on the impact geometry, even outside of the cell’s 
reach, so it would be expected to predict a larger amount of 
collisions. However, the same-cell method does not use the 
impact geometry as a filtering step; hence, it will simulate 
collisions also between slightly diverging drops, such as those 
found in conically-shaped spray jets. 

 
Figure 11. Instantaneous in-cylinder number of spray parcels vs. crank 
angle for the RCCI simulation case. Total parcels injected: clockwise 
from the top: blob model (5514), 2000, 10000, 5000. 
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This counterintuitive fact suggested that the O’Rourke method 
unnecessarily simulated a large number of highly improbable 
collisions. This negatively affected the CPU time performance 
of the method, which, despite being the simplest one, suffered 
from large CPU times due to the large number of computed 
collisions (red bars in Figure 14). In Figure 14, CPU times for 
the parallel collision calculations are split between evaluation 
of the collision adjacency matrix, and actual collision 
computation involving all eligible pairs. 

The parabola method exhibited similar CPU times as 
O’Rourke, even if most of the time was actually spent detecting 
eligible collisions, instead of performing them. The kd-tree 
method, on the other hand, dramatically reduced the CPU 
times for collision detection due to the parallel clustering step, 
and the time for collision simulation due to its additional filtering 
of the least likely collisions. Overall, the kd-tree method 
achieved speed-ups from 1.74 times with as few as 2000 
injected parcels, to 18.6 times with 10000 injected parcels. The 
full blob model (5514 injected parcels) had a speed-up of 3.25 
times. 

 

 
Figure 12. View of predicted spray structure for different collision 
detection methods during fuel injection (main injection at CA = 15.0 
deg aTDC) for the CDC9 case.  

 
Figure 13. Number of collisions simulated in the CDC9 cases with 
10,000 injected parcels. PAR = Parabola-based detection; ORK = 
O’Rourke same-cell detection; KDT=kd-tree enhanced detection. 

RCCI simulation. With a more long-lived spray injection, the 
choice of the collision detection affected the instantaneous 
number of spray parcels in the cloud more noticeably, as 
represented in Figure 15. In all cases, the number of parcels 
reached a peak (due to both injection and breakup) shortly 
after SOI, and then decayed until all liquid fuel had vaporized, 

approximately after -20 degrees aTDC. Again, all models 
exhibited consistent behavior with different numbers of injected 
parcels, and the most significant differences were observed 
with the detection model. O’Rourke’s same-cell model always 
predicted much lower numbers of parcels than the parabola 
and kd-tree clustering models. Again, parabola and kd-tree 
models predicted very similar numbers of parcels, which 
suggested that the final bucket size of the kd-tree method was 
large enough that the algorithm only loosely affected collision 
eligibility, while guaranteeing good parallel scalability.  

This was confirmed as shown by predicted spray structure in 
Figures 16 and 17: the parabola and kd-tree methods yielded 
nearly identical spray structures, while the O’Rourke collision 
method exhibited a noticeably thicker spray core region, with 
larger drops present. In particular, the O’Rourke model 
predicted smaller drops than the others early after the start of 
injection (Figure 17, top), while drop size significantly increased 
later on, in contrast with intuitive atomization-driven processes, 
which lead to the formation of finer drops as the jet penetrates 
into the gaseous phase.  

It should also be noted that collision types were also affected 
by the O’Rourke model. Since the RCCI simulations were run 
on a relatively coarse mesh with ~75,000 cells at BDC, the 
number of 

 
Figure 14. Collision wall times for CDC9 cases. PAR = Parabola-based 

detection; ORK = O’Rourke same-cell detection; KDT=kd-tree 
enhanced detection.  
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Figure 15. Instantaneous in-cylinder number of spray parcels vs. crank 
angle for the RCCI simulation case. Total parcels injected: clockwise 

from the top: blob model (534), 2000, 10000, 5000. 

 

 

Figure 16. View of predicted spray structure for different collision 
detection methods during fuel injection for the RCCI case. In each 

image, the top row represents the in-cylinder sector; the bottom row 
represents the spray footprint as seen from below the injection axis. 

 

 

Figure 17. Predicted liquid Sauter Mean Radius (SMR) distributions for 
the RCCI case vs. radial distance from the injection axis.  
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Figure 18. Collision wall times PAR = Parabola-based detection; ORK 

= O’Rourke same-cell detection; KDT=kd-tree enhanced detection. 

collisions was again pretty large, as shown in Figure 19. Also: 
bouncing and coalescing collisions were the far dominant 
collision types for all models, even though this phenomenon is 
more evident with the mesh-independent methods. This is to 
be attributed to the deterministic impact parameter selection: 
while possible collision outcomes have to cover the whole 
Weber/impact parameter space (including, for example, head-
to-head collisions), in a high-pressure fuel injection event we 
have a slightly diverging spray, so the domain range covered 
by the actual collisions appears to be narrower. 

With all collision detection models, the dominating collision 
types were coalescence and bouncing, which are respectively 
characterized by low collision Weber numbers (similar drop 
velocities or very small drop sizes involved) and high impact 
parameter values (head-to-head type of impact). But, the total 
number of simulated collisions varied significantly. With 
O’Rourke’s model, the number of simulated collisions was 
almost double as with the Parabola model, which again 
suggests for the usefulness of introducing a more reliable and 
mesh independent collision detection method. 

 

 
Figure 19. Number of collisions simulated in the RCCI cases with 
10,000 injected parcels. PAR = Parabola-based detection; ORK = 
O’Rourke same-cell detection; KDT=kd-tree enhanced detection. 

Since RCCI cases involve long-living liquid drops, the barriers 
among clusters imposed by the parallelized kd-tree method 
appeared to effectively filter out collision pairs, which, while 
theoretically eligible based on impact geometry only, involve 
drops that are too far off from each other, such that these pairs 
may already have had a much lower collision probability than 
all others in the same cluster.  

 

 
Figure 20. CPU load (number of vaporizing parcels) with (above) and 
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without (below) vaporization load balancing, for the RCCI case with 
10000 injected parcels. Line color represents the CPU identifier. 

As a result, simulation CPU times for collisions significantly 
benefited from the adoption of the kd-tree clustering method, 
such as reported in Figure 18. The benefits were even stronger 
than with the full-cylinder CDC9 case. As Figure 18 shows, the 
most computationally demanding task was collision detection, 
i.e., building the collision eligibility graph, due to the large 
number of drops surviving for longer times inside the cylinder. 

In the RCCI cases, regardless of the number of injected 
parcels, the parabola-based method was always the most 
computationally demanding case, which is justified by its 
additional geometry-driven deterministic parameters whose 
natural scaling is O(np

2). The same-cell collision method, while 
simple, still needed some CPU time to evaluate all particle-in-
cell buckets, with growing effort at larger numbers of parcels. 
The kd-tree based method, instead, provided excellent 
performance in all cases: from being at least as effective as the 
same-cell method with the lowest number of parcels; and being 
by far the fastest collision detection method when at least 
5,000 parcels had been injected.  

Speed-ups of about 33.9 times versus the parabola method, 
and 19.2 times versus the same-cell method, were observed 
for the 10,000 parcels case. 

Vaporization load balancing impact 

CDC9 simulation. The impact of enabling the greedy algorithm 
for load balancing for the vaporization calculation is reported in 
Figure 20 first. Here, the vaporization workload for each CPU 
of the Np=10000 case is shown, either with or without load 
balancing enabled. When no load balancing is present, the 
workload distribution among processors appeared to be much 
worse, with 1) several CPUs exhibiting flat-zero curves, i.e., 
just sitting idle until all others have completed vaporizing their 
parcels; and 2) the number of parcels count exhibiting a huge 
standard deviation within the CPU set, with a peak value of 
~11,000 parcels handled by one single CPU at ~10 degrees 
aTDC. When load balancing is present, 1) a non-zero minimum 
workload was always present for all CPUs; and 2) the peak 
CPU count was much lower on average, and adding up to 
~4,850 parcels during the same peak count region.  

The CPU-based standard deviation of the instantaneous 
number of parcels handled for vaporization is shown in Figure 
21, providing a quantitative outlook on the effectiveness of 
vaporization load balancing. Across all cases, 2121load 
balancing approximately halved CPU dispersion, as the 
standard deviation was reduced by approximately a factor of 2. 
The resulting standard deviation was very close to the mean 
value, equal to the total number of vaporizing parcels divided 
by the number of CPUs.  

Peak effectiveness was obtained during the pilot injection, 
before TDC: here, load balancing brought the standard 
deviation of the CPU load close to zero for all cases, meaning 
that the vaporization task was almost perfectly balanced 
across CPUs. No differences could be observed in simulation 
output by enabling vaporization load balancing. For example, 
Figure 22 highlights identical predictions of instantaneous in-
cylinder liquid and vaporized fuel mass.  

 

 
Figure 21. Standard deviation of the instantaneous CPU load for 

vaporization in the CDC9 cases, expressed as number of parcels. (red) 
no load balancing; (blue) with vaporization load balancing; (black) 

mean number of vaporizing parcels per CPU. 

 
Figure 22. Predicted in-cylinder fuel vapor mass (red) and 
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instantaneous liquid mass (blue), for several numbers of injected 
parcel cases, with (solid lines) and without (dashed lines) vaporization 

load balancing. 

 
Figure 23. CPU times during vaporization computation of the CDC9 

cases, with or without load balancing. 

The results also highlighted that, different from the collision 
algorithm, whose load balancing impact was greater for spray 
clouds with more parcels, the dependency of vaporization 
speed-up with the number of injected parcels is much less. 
Figure 23 reports cumulative CPU times for all steps of the 
vaporization calculation, with or without load balancing. First of 
all, all MPI-related tasks of the load balancing term, such as 
sending/receiving drop, as well computing the optimal 
partitioning with the greedy algorithm, used almost no 
additional overhead; global speed-ups of 4.88× with 5514 
parcels, 4.36× with 2000, 4.74× with 5000, 4.78× with 10000, 
exhibiting a slightly monotonic increase with more injected 
parcels were seen.  

RCCI simulation. Similarly, for the RCCI simulations, the 
standard deviation of CPU workload is shown in Figure 24. In 
this case, as there is one single injection pulse, the standard 
deviation reaches a maximum shortly after SOI, then starts 
decreasing. Again, the effect of the load balancing algorithm is 
such as to approximately halve the standard deviation of CPU 
load. It should be noted that in this case, the shape of the 
standard deviation curve is apparently meandering. This is 
caused by the mesh topology changes successively introduced 
during the compression stroke, as layers of squish cells are 
removed to keep mesh resolution approximately constant. 
Every time this happens, the CPU decomposition of the finite 

volume domain is updated, which may lead regions of the 
cylinder with spray parcels to suddenly change CPU owner. 

The wall time results reported in Figure 25 also highlighted that 
it is much less. Speed-ups were of 5.23× with 534 parcels, 
5.96× with 2000, 5.70× with 5000, 5.67× with 10000. These 
speed-ups were slightly larger than those observed with the 
CDC9 cases, despite the lower number of CPUs involved (20 
against 48). Also, in this case, over-head due to parallel 
communication operations was negligible in the load balancing 
case.  

As highlighted in Figure 26, the cumulative impact of spray load 
balancing is directly transferred to the total simulation times, as 
all other operators (mainly chemistry, diffusion, advection 
terms) are not affected by the spray load balancing method. 

Concluding remarks 

In this work, we presented two methods to achieve efficient 
load balancing of parallel spray calculations in multi-
dimensional engine simulations. The first addressed mesh-
independent collision estimation algorithms, by employing a 
parallel kd-tree based clustering algorithm to classify eligible 
collision pairs, independent of the underlying mesh. The 
second achieved vaporization model load balancing by using a 
greedy bucket algorithm: buckets represents containers with 
cells and drops; these are assigned an owner CPU based on a 
greedy procedure, which optimizes the parcel-weighted CPU 
load.  

Tests against sector and full meshes, with CDC or RCCI 
operating spray strategies, led to the following conclusions: 

- Identical results were obtained with or without the 
vaporization load balancing algorithm; 
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Figure 24. Standard deviation of the instantaneous CPU load for 

vaporization in the RCCI case, expressed as number of parcels. (red) 
no load balancing; (blue) with vaporization load balancing. 

- The vaporization load balancing greedy algorithm 
yielded speed-ups between 4-6 times both on 20 and 
48 CPUs, and on different spray configurations, 
suggesting that the amount of speed-up achievable 
depends on the instantaneous spray parcel 
distribution in the finite volume domain; 
 

- Mesh independent collision algorithms (with or without 
parallel partitioning) yielded nearly identical spray 
structure results, but a higher number of parcels than 
with O’Rourke’s same-cell method; this suggested 
that the same-cell method, while discarding potentially 
likely collisions outside of the same cell, also 
counterintuitively overestimates the number of 
collisions that can take place among parcels of the 
same cell; 
 

- Most CPU time in both mesh-independent collision 
algorithms was spent evaluating the collision 
detection graph;  
 

- Usage of the parallel kd-tree clustering method 
allowed speed-ups of more than one order of 
magnitude, up to 19.2× versus O’Rourke’s method, 
and up to 33.8× versus the full mesh-independent 
method. 

 
Figure 25. CPU times during vaporization computation of the RCCI 
case, with or without load balancing.  

 
Figure 26. Cumulative CPU time impact of the mesh-independent load 
balancing methods on the RCCI case: (left) Parabola collisions, no 
vaporization load balancing; (right) kd-tree collisions; vaporization load 
balancing. 

 

Future work will be devoted to extending the application of the 
greedy vaporization load balancing algorithm to more sub-
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models, such as the multiphase solver in the Equilibrium-
Phase (EP) framework [28]. 
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