
Page 1 of 15

10/16/2020 – ACADEMIA ONLY

Parallel Load Balancing Strategies
for Mesh-Independent

Spray Vaporization and Collision
Models

Federico Perini, Wisconsin Engine Research

Consultants LLC

Stephen Busch, Sandia National Laboratories

Rolf D. Reitz, Wisconsin Engine Research Consultants

LLC

Angela Wu, Sandia National Laboratories

Abstract

Appropriate spray modeling in multidimensional simulations of
diesel engines is well known to affect the overall accuracy of
the results. More and more accurate models are being
developed to deal with drop dynamics, breakup, collisions, and
vaporization/multiphase processes; the latter ones being the
most computationally demanding. In fact, in parallel
calculations, the droplets occupy a physical region of the in-
cylinder domain, which is generally very different than the
topology-driven finite-volume mesh decomposition. This makes
the CPU decomposition of the spray cloud severely uneven
when many CPUs are employed, yielding poor parallel
performance of the spray computation. Furthermore, mesh-
independent models such as collision calculations require
checking of each possible droplet pair, which leads to a
practically intractable O(np

2/2) computational cost, np being the
total number of droplets in the spray cloud, and additional
overhead for parallel communications. This problem is usually
overcome by employing O’Rourke’s same-cell collision
condition, which, however, introduces severe mesh
dependency. In this work, we introduced two strategies to
achieve optimal load balancing for fast spray calculations with
mesh-independent models. Both methods were implemented
in the FRESCO CFD code. For drop collisions, a mesh-
independent collision detection algorithm with high parallel
efficiency was developed. This method pre-sorts eligible
collision pairs using a high-performance three-dimensional
clustering algorithm similar to what is used for on-the-fly
chemistry model reduction; these are then filtered again based
on deterministic impact parameters and assembled in parallel
into a global sparse adjacency structure. For the particle-in-cell
vaporization/multiphase solver, we developed a solution-
preserving load balancing algorithm. At each timestep, the
parallel cell-ownership-based spray cloud structure is re-sorted
into cell-owner bins, which are used to distribute the spray
parcels across all CPUs along with their cell thermodynamic
states; the distributed solution results are then sent back to the
cell owners. The combination of both methods achieved more
than one order of magnitude speed-up in spray solution for
diesel engine simulations with a full and sector cylinder
geometry.

Introduction

Lagrangian particle modeling using the Lagrangian-
Drop/Eulerian Fluid (LDEF) method [1] represents a critical
boundary condition in the multidimensional modeling chain of
direct-injection engines, as spray drop scales are orders of
magnitude smaller than one’s engine multidimensional grid.
Eulerian fluid modelling in the cylinder is not feasible when the
engine scale is of interest, and Lagrangian trackers
representing liquid parcels or drop distributions are preferred.
Lagrangian parcels act as moving boundary conditions to the
Eulerian CFD solver, as mass, energy, and momentum are
transferred to the Eulerian phase as source terms due to spray
in the Navier-Stokes equations [2]. Achieving an accurate
representation of the liquid phase in terms of both size and
momentum distributions is hence necessary to achieve a good
representation of gas-phase fuel-air mixing and combustion in
the engine.

In the recent past models have been developed to improve
several aspects of the computational representation of the
Lagrangian spray cloud: for breakup [3], injection and drop
dynamics [4, 5], drop-to-drop collisions and their outcomes [6,
7], and vaporization [8, 9]. These models address deficiencies
in both physical modeling and the computational
implementation; the latter efforts being mainly devoted at
reducing the dependency of the aforementioned algorithms on
the local mesh size and structure.

All these models increase the computational burden of the
Lagrangian spray calculation; and, as they have not been
developed with execution on parallel computers in mind, they
typically do not scale well in parallel on many CPUs. In this work,
we tackle the parallel scaling of spray algorithms, and develop
methods for the efficient scalability of previously developed
vaporization and mesh-independent collision methods [5]. For
vaporization/multiphase source terms, we develop a solution-
preserving method. Their calculation depends on the whole set
of particles inside one computational cell and its local
thermodynamic state. Therefore, a greedy algorithm for load-
balancing of the vaporization solver, based on solution “bins”,
was developed to scatter drops and their gas-phase cell owners
across the CPUs. Each bin contains both one cell’s field and
geometry information and all drops inside of it. In this way, the
owner cell composition is sequentially updated in the same way
as in the serial solver, and an identical solution is achieved as
with the serial case.

For collisions, we developed a parallel method for mesh-
independent estimation of eligible drop-to-drop collision pairs in
the whole mesh. The whole spray structure is copied onto each
CPU; and a high-performance three-dimensional (3d)
clustering algorithm [10] is run to pre-sort eligible collision pairs
based on previously assessed eligibility conditions [5].
Additional filtering based on a deterministic impact parameter
is applied, and all eligible collision pairs are eventually stored
into a parallel, lower-triangular sparse adjacency structure,
achieving a fast, parallel, and mesh-independent collision
solution.

The new load balancing algorithms were assessed against two
well-suited diesel engine simulation setups: one features a
conventional diesel combustion (CDC) operating point with a
near-TDC pilot-main injection strategy, and is run with a full

Page 2 of 15

10/16/2020 – ACADEMIA ONLY

engine cylinder model and all injector nozzle holes; another
features a sector mesh representation and an Reactivity-
Controlled Compression Ignition (RCCI)-like single injection
pulse, early during the compression stroke, with a longer liquid
phase lifetime. Both cases highlighted the capability of the two
load balancing methods to achieve more than one order of
magnitude speed-up for the spray solution when compounded.

Numerical setup

The FRESCO CFD simulation platform was employed to model
the engine. The code implements an unstructured, parallel
volume-of-fluid solver for the Navier-Stokes equations with
automatic domain decomposition for boundary-fitted variable-
topology meshes. More details about FRESCO are given in
[11]. Turbulence is modeled using a generalized re-
normalization group (GRNG) turbulence closure model that
has been validated with engine flows, as well as for impinging
and reacting jets [12]. Fuel injection and spray phenomena are
modeled with a Lagrangian-Droplet/Eulerian-Fluid (LDEF)
approach. Table 1 is a summary of the sub-models used to
simulate turbulence and sprays for the current simulations.

Table 1. Computational model setup employed for the current study.

Phenomenon Sub-model

Turbulence
Generalized re-normalization group
(GRNG) k-ε [13, 12]

Injection Blob model with dynamic blob allocation [5]

Spray angle Reitz and Bracco [14]

Spray breakup
Hybrid KH-RT instability, Beale and Reitz
[3]

Near-nozzle flow
Unsteady gas-jet model with implicit
momentum coupling [5]

Drop drag Analytical with Mach number effects [5]

Droplet collision

Deterministic impact; bounce, coalescence,
reflexive separation, and stretching
separation [6]; dynamic radius of influence
[5]

Evaporation 1D discrete multi-component fuel [8]

Piston
compressibility

Static, Perini et al. [15]

Parallel Collision Detection algorithm

Grid-independent collision model. Droplet collision physics are
modelled using a deterministic impact parameter and extended
collision outcomes [6], and a mesh-independent radius-of-
influence (ROI) based collision detection algorithm is employed
[5]. The ROI model was developed to simplify the
computational burden of collision detection estimates. In
general, collisions may occur between any pair of
computational parcels in the computational domain, yielding a
computational cost O(np

2). As the number of parcels can grow
rapidly during injection (up to np > 105 if a multi-hole injector is
employed), this cost quickly becomes too high. In the ROI
model, a ‘region of influence’ concept is introduced to define a

spatial region surrounding each droplet, where no collisions
can take place outside of its reach. This region was originally
defined as a fixed radius in [16], and later extended with the
tetrahedralization model in [5]. The radius of influence is
assumed to be equivalent to the radius of a sphere with the
same volume as that of the physical region containing all Np
drops in a computational parcel’s drop distribution. As
represented in two dimensions in Figure 1, all Np drops in the
parcel are assumed to be equally spaced, hence located such
that they form an exact tetrahedralization. A user-defined
liquid/gas volume fraction parameter is employed:

�� = ��/��, (1)

where dc represents center-to-center distance of neighbor
drops, and rp the drop radius. This parameter was assumed to
be constant and equal to kV=10 as it provided a Pareto-optimal
tradeoff between number of modeled collisions and
computational cost [5]; though being an approximation, this
approach does not rely on the local grid features and is thus
fully mesh-independent. Furthermore, as recent research is
enabling fast multi-phase liquid-vapor volume fraction
calculations [17], future efforts will be able to include more
realistic estimates of the parcel’s cloud volume based on the
local thermodynamic conditions.

Figure 1. Tetrahedralized representation of drop-in-parcel distribution.

The tetrahedralized drop-in-parcel representation provides a
fast, analytical formulation for the volume-of-influence (VOIp) of
the computational parcel, which is then equaled to a ROI as

	
�� = �
�� �
����/�

. (2)

The availability of an ROI estimate for each parcel is needed to
estimate a number of collisions between parcel pairs:
according to O’Rourke [18], the probable number of drop-to-
drop collisions in a parcel-to-parcel collision event, where the
parcels are denoted as S (having smaller drops) and L (having
larger drops), is:

���� = �
�

�����������
!����!���

|#$ − #&|, (3)

where θθθθS and θθθθL represent parcel velocity vectors. This formula
is at the basis of the widely used, conventional ‘same-cell’
O’Rourke collision approach [18]: there, same-cell filtering was
employed to avoid any expensive spatial search. However, this

prpVc rkd =

Page 3 of 15

10/16/2020 – ACADEMIA ONLY

algorithm has been widely known to introduce severe grid
dependency and produce inaccurate results with non-physical
spray structures [7].

To mitigate the O(np
2) cost of estimating all potential collision

pairs, we employ a two-staged parabola-function-based pre-
filtering strategy to rule out all collisions which cannot be
possible according to the local collision geometry. First, a pre-
screening based on a simple geometric overlap condition is
evaluated, as represented in Figure 2:

'()&�*+�,)$�*+�- . 	
�& / Δ* #&, (4)

i.e., all parcel pairs far enough from each other that their
spheres cannot physically overlap during one timestep are
immediately discarded. This initial search is made O(np log np)
by employing a kd-tree data structure, while the rest of the
search is again O(np

2). In practice, the initial screening
dramatically reduces the number of eligible collision pairs,
making the second stage viable and fast. During the second
stage, the instantaneous squared distance between two
computational parcels during a time-step is estimated as a
parabolic function:

'2�)$�*+�,)&�*+�, *� = 34*2 / 35* / 3�, (5)

where

34 = ‖#$ − #&‖2,
35 = 2〈)$�*+� −)&�*+�, #$ − #&〉,
3� = ‖)$�*+� −)&�*+�‖2. (6)

By exploiting the analytical features of this parabolic function, it
is possible to compute a minimum distance dmin and a
minimum-distance-time, tmin, which computes when the two
parcels, with these velocities and initial locations, will be
closest to each other, and how much that distance is. Based
on these metrics, collisions are deemed impossible for those
parcel pairs where:

35 ; 0, *=>+ ? 0, → moving far away from each other;

'=>+2 ; �	
�$ / 	
�&�2, → never close enough to collide;

=>+ @ Δ, → too far to collide during current step.
 (7)

Once a restricted set of eligible collision pairs is eventually
found, the individual collision probabilities and the
corresponding collision outcomes are based on the local
impact parameter b (Figure 3), collisional Weber number Wec,

and drop diameter ratio ∆:

A = sin E = F1 − 〈#HI#J,)��KL�I)H�KL�〉
‖#HI#J‖ ⋅‖)��KL�I)H�KL�‖ ,

NO� = P�Q�R�P�Q�R
Q�R�Q�R

‖#$ − #&‖2 Q�
S ,

Δ = T$/T&, (8)

where ρ represents liquid density, σ the surface tension, and β
the relative impact angle as represented in Figure 3.

Figure 2. Schematic of ROI-based collision eligibility estimation.

Figure 3. Deterministic collision impact parameter evaluation.

Parallel collision algorithm. Despite the sequential filtering
operations, collision eligibility estimation can still take a
relevant amount of CPU time in real-world scenarios, for
example, in full engine simulations where multiple injector
nozzles are present and the total number of drops is of the
order of a few hundred thousand. Also, in parallel simulations,
when collisions can happen across CPUs, the same algorithm
with the global spray cloud data has to be solved identically on
each CPU, making for a very inefficient and actually non-
parallel usage of the multiple CPUs. Hence, a parallel
algorithm can further speed-up collision eligibility detection.

Instead of evaluating binary collision eligibility for each collision
pair, a collision detection adjacency matrix is built first. With no
pre-processing of the eligible collision pairs according to the
two-stage procedure outlined in the previous section, the
matrix would be fully symmetric, which would render its storage
as a matrix object unfeasible due to memory constraints.
However, in practice, the filtering procedure leads to a highly
sparse structure, because only parcels sufficiently close to
each other can actually collide. Hence, a sparse, square,

symmetric structure was employed. It has size (np × np), and its
sparsity represents the graph of eligible collision pairs. The
structure of this matrix is represented in Figure 4. In our

Sρ

β

Lρ

Lθ

Sθ

relθ 0r

Page 4 of 15

10/16/2020 – ACADEMIA ONLY

implementation, the object-oriented Compressed Sparse Row
(CSR) class is employed [19].

Similar to the non-parallel procedure, the algorithm starts from
a parallel gather of the whole spray cloud structure (parcel
locations, velocities, and ROIs).

Figure 4. Parallel collision eligibility matrix structure.

Then:

1) A kd-tree clustering procedure is applied to the whole
spray cloud according to the algorithm of [10], with a
final bucket size equal to the maximum parcel ROI in
the spray cloud. As a result, all parcels are clustered
into buckets, sufficiently close to each other,
achieving ROI-based grouping similar to the case
represented in Figure 2. This accounts for a first
filtering of the eligible collision pairs: parcels not
inside the same bucket are not considered for
collision. As this operation is fast and requires full
knowledge of the tree structure, it is run identically on
each CPU.

2) Second, the parallel part of the algorithm is run. To
maximize parallel scalability, the workload for building
the collision detection matrix is partitioned by rows. At
the end of the procedure, each CPU must have a
whole copy of the matrix. Hence, there is no need for
complex CPU partitioning: each CPU will process
approximately the same number of buckets based on
an even distribution.

3) For all parcels in each bucket, the collision eligibility
constraints of Equation 7 are evaluated, and eligible
pairs are stored as nodes of the lower sparse
adjacency graph.

4) After each CPU has processed all rows of its buckets,
its horizontal band of the matrix is ready; a final global
data gathering is the last operation needed to
reconstruct the whole matrix on each CPU.

Parallel Vaporization Load-Balancing

In the FRESCO code, the spray solution is intrinsically parallel:
the code’s approach is to store the computational parcels on
the CPU that owns the cells that contain them. From a coding
standpoint, this is convenient, as the solution to the parcel
equations and the spray sub-models always requires
knowledge of the gas-phase thermodynamic and turbulence
properties surrounding them, so, no parallel communications
are involved when solving for Lagrangian-related terms.
However, this approach carries over an intrinsically severe
computational efficiency drawback: if the drop cloud is
geometrically located in a few compact regions of the domain,
then only a few CPUs will contain the majority of the parcels –
those where most of the dense spray core is located – leading
to poor load balancing.

Among the Lagrangian models, vaporization plays the most
important role, especially in FRESCO, where complex physics
with multicomponent fuels and an internal 1D drop
discretization [8], or a full multiphase solver, are available.

The spray vaporization algorithm is not an “embarrassingly”
parallel problem, i.e., a problem where the solution to each
individual component is completely independent of any others.
In fact, following the method of [2], vaporization of all spray
drops is solved sequentially, as represented in Figure 5. After
each parcel lying inside a cell is solved for its vaporization rate,
the cell’s gas-phase properties are sequentially updated before
solving for the next parcel. This introduces dependency of the
vaporization algorithm on the order the parcels are fed to the
vaporization algorithm: if a parcel is being vaporized after
several other ones, its vaporization rate would likely be slower
than if it was vaporized first, since the gas-phase has already
received much fuel vapor, and underwent significant cooling
from the vaporization of the previous parcels. Hence, a parallel
vaporization algorithm must take this concept into account. If
each drop was solved for independently, as represented in
Figure 5 (below), all drops in a same cell would be ‘first’, and a
greater vaporization rate would be predicted. Also, the results
from a parallel solution would be different than those from a
single-CPU one.

Figure 5. Schematic of sequential vs. parallel drop vaporization
solution. (top) sequential: the vaporized amount of next drops is
affected by already-vaporized fuel from the previous drops; (bottom)

1, 2, … np

1

2

⁝

np

CPU1

CPU2

bucket1

bucket2

...

No load balancing: sequential in-cell vaporization

evap. #1 evap. #2

Load balancing: parallel in-cell vaporization

evap. #1

evap. #2

merge mass/energy

transfer

Page 5 of 15

10/16/2020 – ACADEMIA ONLY

parallel: each drop’s vaporization rate responds to a ‘scratch’
underlying gas phase state.

To overcome this issue, we introduce the idea of ‘buckets’. A
bucket is a data structure which contains one cell’s gas phase,
and all drops geometrically within it. So, the vaporization
solution within each bucket will be identical regardless of the
CPU it is being solved upon. A bucket-based greedy algorithm
for load balancing was hence developed to maximize parallel
efficiency while not affecting the sequential parcel-in-cell
solution constraint. To atychieve identical solution results
between the serial and the parallel cases, the greedy algorithm
starts by binning all parcels into buckets by cell ownership, as
represented in Figure 6: each bucket contains all parcels in the
same computational cell. Within each bucket, parcels are
sorted for increasing drop radius, such that the smallest-drop
distributions (which have the shortest timescales) will be
solved for vaporization first. The target number of parcels per
CPU is the algebraic average:

��UUU = �
VWXY

∑ ��,>
VWXY
> . (9)

Figure 6. Greedy algorithm bucket redistribution for a randomly-

sampled set with 10,000 parcels in 16 CPUs. (Top) before
redistribution; (bottom) after redistribution. Dashed line: target size;

colors: initial CPU owner.

At each greedy iteration, those CPUs still having more than the
target number of parcels will re-distribute one or more buckets
to other CPUs that have less than the target. As any greedy
algorithms, the procedure stops when the best redistribution
operation at any iteration count would ‘make things worse’, i.e.,
would cause the final number of parcels in any CPUs to be
farther from the target than the current distribution.

Figure 6 represents the results of the greedy redistribution from
a randomly sampled set of 10,000 parcels scattered across 16
CPUs; Figure 7 represents redistribution from a randomly
sampled set of 150,000 parcels across 64 CPUs. In both
figures, the original bucket CPU is represented by color. Note
that each CPU is either a sender or a receiver based on its
initial number of parcels; its state cannot be mixed and cannot
change during the iterations. This constraint is actually needed
for the vaporization parallel load balancing, as the memory
range above the currently stored parcels is used as temporary
storage for the parcels being received. If a CPU was both a
sender and a receiver, memory would be overwritten causing
information loss, while using a specific additional memory
allocation would render the algorithm less efficient, both CPU-
and memory-wise.

The greedy algorithm defines the optimal drop distribution such
that all parcels-in-cell are kept together, and the number of
drops solved on each CPU is as close as possible to being
even. The implementation also includes data structures and
methods to communicate these pieces of information across
the CPUs:

Figure 7. Greedy algorithm bucket redistribution for a randomly-
sampled set with 150,000 parcels across 64 CPUs. (Top) before

redistribution; (bottom) after redistribution. Dashed line: target size;
colors: initial CPU owner. Each CPU is either a sender or receiver.

1) The optimal bucket distribution is computed by the
greedy algorithm;

2) Sparse adjacency structures for data exchange of
both parcel and gas-phase data across CPUs are
created and temporary storage is allocated;

3) Data is transferred using MPI non-blocking
communications;

5 10 15

bucket #

0

200

400

600

800

1000

1200

cpu #

np

Page 6 of 15

10/16/2020 – ACADEMIA ONLY

4) Vaporization rates for all local parcels are computed;
5) Information is sent back to the actual CPU owners:

updated drop size, internal distribution, composition
and temperature; and species mass and energy
exchanged with the gas phase;

6) Cell source terms are updated back on the actual
CPU owners;

7) Temporary storage is deallocated.

It should be noted that the current algorithm minimizes the gas-
phase cell status information having to be exchanged through
the network, as each set of parcels being sent is clustered, so
gas-phase information about each cell does not have to be
duplicated. Finally, the mesh-independent form of FRESCO’s
Lagrangian source terms (Figure 8) is enforced: during the
solution of each parcel-in-bucket, only the volume fraction of
the vaporized amount, corresponding to its geometric parcel-
cell overlap volume, is actually used to update the bucket cell’s
gas phase composition. The full Eulerian source term field is
computed at the end, after the vaporization rates from all
parcels are available.

Figure 8. Comparison of (left) KIVA-like [2] vs. FRESCO’s mesh
independent Lagrangian source term calculation approaches.

Results and discussion

Two Diesel engine simulation test cases were run to assess
the computational efficiency of both collision and vaporization
load balancing methods. The first test case features a
conventional Diesel combustion strategy, featuring relatively
short-lived liquid spray clouds close to TDC, and uses a full
engine mesh with 7 nozzle holes, hence with a relatively well
distributed spatial occupation of the spray jets. The second one
employs a sector mesh, and features a single-pulse early
diesel RCCI injection, which has longer lifetime and worse
usage of the cylinder sector volume. For both of them, 24-case
simulation sweeps were run to systematically analyze the
behavior of both submodels and the impact of the number of
computational parcels in the spray cloud on them:

• Collision detection method - 3 methods were used:
- O’Rourke’s same-cell collision detection method

(“ORK”) [18];
- Parabola-based pre-filtering method, operated on the

full spray cloud (“PAR”) [5];
- Parallel kd-tree based cloud clustering method,

followed by parabola-based pre-filtering (“KDT”) –
current work;

• Vaporization solution method:
- With no load balancing;
- With greedy load balancing – current work;

• Number of injected parcels:

- Variable, according to full blob model [5]
- Fixed, Np = 2000, 5000, 10000 per nozzle

Two pulse Diesel spray injection case (CDC9). The Sandia
optical diesel engine platform was used as the first test case. A
full engine geometry model was used, which includes the
intake and exhaust ports and runners up to the surge tanks in
the optical facility. The optical piston featured a stepped-lip
bowl design (See [21, 22]). Engine data is summarized in
Table 2 [23]. The model uses an unstructured, body-fitted
hexahedral mesh with 724,000 cells at bottom dead center.
The mesh is depicted in Figure 9. Details of the engine’s 7-hole
injector are given in Table 2. Spray targeting in the simulation
matches the spray targeting used in corresponding engine
experiments: both spray targeting and measured injection rate
profiles are available on the ECN website [25]. The engine
operating point represents a part-load (9 bar IMEP),
conventional diesel combustion strategy (CDC9) with a split
pilot-main injection strategy, with the main pulse’s SOI
approximately at TDC. Injection takes place in a non-reacting
environment with 100% N2, as the experimental results have
been evaluated using fuel tracer planar laser-induced
fluorescence (PLIF) images. All simulations for this case were
performed on the same node equipped with 48 CPUs, from -20
deg aTDC to +40 deg aTDC.

Figure 9. Cylinder detail of the full-engine CFD mesh used for the

engine spray calculation.

[� [�
Ω

Page 7 of 15

10/16/2020 – ACADEMIA ONLY

Table 2: Engine and fuel injector geometry data

Bore 82.0 mm

Stroke 90.4 mm

Connecting rod length 166.7 mm

Squish height 1.36 mm

Geometric compression ratio 15.8 : 1

Injector nozzle holes x diameter 7 x 139 µm

Nozzle hole conicity (ks) 1.5

Injector opening angle 149°

RCCI simulation. The second validation test case featured a
different configuration, with a sector mesh model (Figure 10)
and an early Diesel injection pulse. The testcase mimicked an
RCCI-like injection pulse in the same engine, equipped with an
RCCI piston [26], and modeled using a sector mesh approach.
The choice of an RCCI operating point was motivated by the
need to assess computational efficiency at the upper end of
the liquid fuel’s lifetime range: this leads to more parcels and
more complex collision and vaporization scenarios than in
near-TDC injections. The sector mesh has 74,000 cells at
bottom dead center. A single injection pulse, from -60 to -53.35
deg aTDC, was modeled using the CRI2.2 rate of injection
model of [27]. A single-component fuel model using n-
dodecane as the physical surrogate for vaporization was
employed. Simulations for each tested setup were run on the
same single node with 20 CPUs, with total simulation times
ranging from 1h17’ to 1h50’.

Figure 10. View of the computational mesh employed for the RCCI
calculation at -20 degrees aTDC.

Collision model impact

CDC9 simulation. The number of instantaneous parcels alive
during a conventional diesel combustion case is relatively low,
as the time histories of parcel count show in Figure 11. All
curves exhibit two separate events with a first, low peak slightly
earlier than TDC due to the pilot injection, and a bi-modal
distribution during the main injection with two peaks: one
shortly after SOImain, and one close to EOImain. In all cases, the
parcel count quickly decays after the end of injection. Choice of
the collision method significantly affected the parcel count. The
O’Rourke (ORK) model consistently exhibited lower parcel
numbers than the parabola (PAR) and kd-tree (KDT) methods,
which instead showed very similar parcel histories. This

suggests that the kd-tree method does not significantly change
the collision detection matrix. With KDT, collisions can only
take place with other parcels from the same cluster; hence, the
kd-tree based parallel clustering produced accurate partitions
of the spray cloud. All models showed consistent behavior with
different numbers of injected parcels, with greater parcel
numbers when more parcels were injected.

In the O’Rourke model, a slightly lower number of
instantaneous in-cylinder parcels was observed. As shown in
Figure 12, this did not affect the spray structure significantly, as
no meaningful differences could be observed in the main jets
with any of the collision detection methods. However, as a
drawback, that would affect CPU time dramatically. As all
same-cell parcels are forced to be eligible for collisions
regardless of the collision geometry, the number of simulated
collisions with the O’Rourke model is significantly higher than
with the mesh-independent models, such as reported in Figure
13. With 10,000 injected parcels, the O’Rourke method
simulated slightly more than 840,000 collisions, as opposed to
202,000 for the parabola method, and just 52,000 for the kd-
tree based method. It should be noted that the parabola
method provides an exact filtering of the eligible collisions
based on the impact geometry, even outside of the cell’s
reach, so it would be expected to predict a larger amount of
collisions. However, the same-cell method does not use the
impact geometry as a filtering step; hence, it will simulate
collisions also between slightly diverging drops, such as those
found in conically-shaped spray jets.

Figure 11. Instantaneous in-cylinder number of spray parcels vs. crank
angle for the RCCI simulation case. Total parcels injected: clockwise
from the top: blob model (5514), 2000, 10000, 5000.

N
p
 [

 1
0

0
0
]

N
p
 [

 1
0

0
0
]

N
p
 [

 1
0

0
0
]

N
p
 [

 1
0

0
0
]

Page 8 of 15

10/16/2020 – ACADEMIA ONLY

This counterintuitive fact suggested that the O’Rourke method
unnecessarily simulated a large number of highly improbable
collisions. This negatively affected the CPU time performance
of the method, which, despite being the simplest one, suffered
from large CPU times due to the large number of computed
collisions (red bars in Figure 14). In Figure 14, CPU times for
the parallel collision calculations are split between evaluation
of the collision adjacency matrix, and actual collision
computation involving all eligible pairs.

The parabola method exhibited similar CPU times as
O’Rourke, even if most of the time was actually spent detecting
eligible collisions, instead of performing them. The kd-tree
method, on the other hand, dramatically reduced the CPU
times for collision detection due to the parallel clustering step,
and the time for collision simulation due to its additional filtering
of the least likely collisions. Overall, the kd-tree method
achieved speed-ups from 1.74 times with as few as 2000
injected parcels, to 18.6 times with 10000 injected parcels. The
full blob model (5514 injected parcels) had a speed-up of 3.25
times.

Figure 12. View of predicted spray structure for different collision
detection methods during fuel injection (main injection at CA = 15.0
deg aTDC) for the CDC9 case.

Figure 13. Number of collisions simulated in the CDC9 cases with
10,000 injected parcels. PAR = Parabola-based detection; ORK =
O’Rourke same-cell detection; KDT=kd-tree enhanced detection.

RCCI simulation. With a more long-lived spray injection, the
choice of the collision detection affected the instantaneous
number of spray parcels in the cloud more noticeably, as
represented in Figure 15. In all cases, the number of parcels
reached a peak (due to both injection and breakup) shortly
after SOI, and then decayed until all liquid fuel had vaporized,

approximately after -20 degrees aTDC. Again, all models
exhibited consistent behavior with different numbers of injected
parcels, and the most significant differences were observed
with the detection model. O’Rourke’s same-cell model always
predicted much lower numbers of parcels than the parabola
and kd-tree clustering models. Again, parabola and kd-tree
models predicted very similar numbers of parcels, which
suggested that the final bucket size of the kd-tree method was
large enough that the algorithm only loosely affected collision
eligibility, while guaranteeing good parallel scalability.

This was confirmed as shown by predicted spray structure in
Figures 16 and 17: the parabola and kd-tree methods yielded
nearly identical spray structures, while the O’Rourke collision
method exhibited a noticeably thicker spray core region, with
larger drops present. In particular, the O’Rourke model
predicted smaller drops than the others early after the start of
injection (Figure 17, top), while drop size significantly increased
later on, in contrast with intuitive atomization-driven processes,
which lead to the formation of finer drops as the jet penetrates
into the gaseous phase.

It should also be noted that collision types were also affected
by the O’Rourke model. Since the RCCI simulations were run
on a relatively coarse mesh with ~75,000 cells at BDC, the
number of

Figure 14. Collision wall times for CDC9 cases. PAR = Parabola-based

detection; ORK = O’Rourke same-cell detection; KDT=kd-tree
enhanced detection.

PAR ORK KDT
0

200

400

600

800

1000

CDC9, N
p
 = 10000

coalesce

graze

reflexive separation

bounce

stretching separation

w
al

l
ti

m
e

[m
in

]

w
al

l
ti

m
e

[s
]

w
al

l
ti

m
e

[m
in

]

w
al

l
ti

m
e

[m
in

]

Page 9 of 15

10/16/2020 – ACADEMIA ONLY

Figure 15. Instantaneous in-cylinder number of spray parcels vs. crank
angle for the RCCI simulation case. Total parcels injected: clockwise

from the top: blob model (534), 2000, 10000, 5000.

Figure 16. View of predicted spray structure for different collision
detection methods during fuel injection for the RCCI case. In each

image, the top row represents the in-cylinder sector; the bottom row
represents the spray footprint as seen from below the injection axis.

Figure 17. Predicted liquid Sauter Mean Radius (SMR) distributions for
the RCCI case vs. radial distance from the injection axis.

-60 -40 -20
0

1

2

3

4

5

6

7
np = 534

PAR

ORK

KDT

-60 -40 -20
0

10

20

30

40

50

60
np = 2000

PAR

ORK

KDT

-60 -40 -20

[deg aTDC]

0

10

20

30

40

50

60
np = 5000

PAR

ORK

KDT

-60 -40 -20

[deg aTDC]

0

20

40

60

80

100

120
np = 10000

PAR

ORK

KDT

d
ro

p
 s

m
r

[u
m

]
d
ro

p
 s

m
r

[u
m

]

Page 10 of 15

10/16/2020 – ACADEMIA ONLY

Figure 18. Collision wall times PAR = Parabola-based detection; ORK

= O’Rourke same-cell detection; KDT=kd-tree enhanced detection.

collisions was again pretty large, as shown in Figure 19. Also:
bouncing and coalescing collisions were the far dominant
collision types for all models, even though this phenomenon is
more evident with the mesh-independent methods. This is to
be attributed to the deterministic impact parameter selection:
while possible collision outcomes have to cover the whole
Weber/impact parameter space (including, for example, head-
to-head collisions), in a high-pressure fuel injection event we
have a slightly diverging spray, so the domain range covered
by the actual collisions appears to be narrower.

With all collision detection models, the dominating collision
types were coalescence and bouncing, which are respectively
characterized by low collision Weber numbers (similar drop
velocities or very small drop sizes involved) and high impact
parameter values (head-to-head type of impact). But, the total
number of simulated collisions varied significantly. With
O’Rourke’s model, the number of simulated collisions was
almost double as with the Parabola model, which again
suggests for the usefulness of introducing a more reliable and
mesh independent collision detection method.

Figure 19. Number of collisions simulated in the RCCI cases with
10,000 injected parcels. PAR = Parabola-based detection; ORK =
O’Rourke same-cell detection; KDT=kd-tree enhanced detection.

Since RCCI cases involve long-living liquid drops, the barriers
among clusters imposed by the parallelized kd-tree method
appeared to effectively filter out collision pairs, which, while
theoretically eligible based on impact geometry only, involve
drops that are too far off from each other, such that these pairs
may already have had a much lower collision probability than
all others in the same cluster.

Figure 20. CPU load (number of vaporizing parcels) with (above) and

PAR ORK KDT
0

0.002

0.004

0.006

0.008

0.01
np = 534

PAR ORK KDT
0

0.02

0.04

0.06

0.08
np = 2000

collision matrix

collision calculation

PAR ORK KDT
0

0.1

0.2

0.3

0.4

0.5
np = 5000

PAR ORK KDT
0

0.5

1

1.5
np = 10000

PAR ORK KDT
0

500

1000

1500

2000

N
p
 = 10000

coalesce

graze

reflexive separation

bounce

stretching separation

Page 11 of 15

10/16/2020 – ACADEMIA ONLY

without (below) vaporization load balancing, for the RCCI case with
10000 injected parcels. Line color represents the CPU identifier.

As a result, simulation CPU times for collisions significantly
benefited from the adoption of the kd-tree clustering method,
such as reported in Figure 18. The benefits were even stronger
than with the full-cylinder CDC9 case. As Figure 18 shows, the
most computationally demanding task was collision detection,
i.e., building the collision eligibility graph, due to the large
number of drops surviving for longer times inside the cylinder.

In the RCCI cases, regardless of the number of injected
parcels, the parabola-based method was always the most
computationally demanding case, which is justified by its
additional geometry-driven deterministic parameters whose
natural scaling is O(np

2). The same-cell collision method, while
simple, still needed some CPU time to evaluate all particle-in-
cell buckets, with growing effort at larger numbers of parcels.
The kd-tree based method, instead, provided excellent
performance in all cases: from being at least as effective as the
same-cell method with the lowest number of parcels; and being
by far the fastest collision detection method when at least
5,000 parcels had been injected.

Speed-ups of about 33.9 times versus the parabola method,
and 19.2 times versus the same-cell method, were observed
for the 10,000 parcels case.

Vaporization load balancing impact

CDC9 simulation. The impact of enabling the greedy algorithm
for load balancing for the vaporization calculation is reported in
Figure 20 first. Here, the vaporization workload for each CPU
of the Np=10000 case is shown, either with or without load
balancing enabled. When no load balancing is present, the
workload distribution among processors appeared to be much
worse, with 1) several CPUs exhibiting flat-zero curves, i.e.,
just sitting idle until all others have completed vaporizing their
parcels; and 2) the number of parcels count exhibiting a huge
standard deviation within the CPU set, with a peak value of
~11,000 parcels handled by one single CPU at ~10 degrees
aTDC. When load balancing is present, 1) a non-zero minimum
workload was always present for all CPUs; and 2) the peak
CPU count was much lower on average, and adding up to
~4,850 parcels during the same peak count region.

The CPU-based standard deviation of the instantaneous
number of parcels handled for vaporization is shown in Figure
21, providing a quantitative outlook on the effectiveness of
vaporization load balancing. Across all cases, 2121load
balancing approximately halved CPU dispersion, as the
standard deviation was reduced by approximately a factor of 2.
The resulting standard deviation was very close to the mean
value, equal to the total number of vaporizing parcels divided
by the number of CPUs.

Peak effectiveness was obtained during the pilot injection,
before TDC: here, load balancing brought the standard
deviation of the CPU load close to zero for all cases, meaning
that the vaporization task was almost perfectly balanced
across CPUs. No differences could be observed in simulation
output by enabling vaporization load balancing. For example,
Figure 22 highlights identical predictions of instantaneous in-
cylinder liquid and vaporized fuel mass.

Figure 21. Standard deviation of the instantaneous CPU load for

vaporization in the CDC9 cases, expressed as number of parcels. (red)
no load balancing; (blue) with vaporization load balancing; (black)

mean number of vaporizing parcels per CPU.

Figure 22. Predicted in-cylinder fuel vapor mass (red) and

0 20 40

crank angle [deg aTDC]

0

0.5

1

1.5

CPU load, N
p
 = 5541

(load balance)

(no loadb)

n
p
/n

cpu

0 20 40

crank angle [deg aTDC]

0

0.1

0.2

0.3

0.4

CPU load, N
p

 = 2000

0 20 40

crank angle [deg aTDC]

0

0.2

0.4

0.6

0.8

1

1.2

CPU load, N
p
 = 5000

0 20 40

crank angle [deg aTDC]

0

0.5

1

1.5

2

CPU load, N
p
 = 10000

0 20 40

crank angle [deg aTDC]

0

5

10

15

20

25

CPU load, N
p
 = 5514

load balance

no load balance

0 20 40

crank angle [deg aTDC]

0

5

10

15

20

25

CPU load, N
p
 = 2000

0 20 40

crank angle [deg aTDC]

0

5

10

15

20

25

CPU load, N
p
 = 5000

0 20 40

crank angle [deg aTDC]

0

5

10

15

20

25

CPU load, N
p
 = 10000

Page 12 of 15

10/16/2020 – ACADEMIA ONLY

instantaneous liquid mass (blue), for several numbers of injected
parcel cases, with (solid lines) and without (dashed lines) vaporization

load balancing.

Figure 23. CPU times during vaporization computation of the CDC9

cases, with or without load balancing.

The results also highlighted that, different from the collision
algorithm, whose load balancing impact was greater for spray
clouds with more parcels, the dependency of vaporization
speed-up with the number of injected parcels is much less.
Figure 23 reports cumulative CPU times for all steps of the
vaporization calculation, with or without load balancing. First of
all, all MPI-related tasks of the load balancing term, such as
sending/receiving drop, as well computing the optimal
partitioning with the greedy algorithm, used almost no
additional overhead; global speed-ups of 4.88× with 5514
parcels, 4.36× with 2000, 4.74× with 5000, 4.78× with 10000,
exhibiting a slightly monotonic increase with more injected
parcels were seen.

RCCI simulation. Similarly, for the RCCI simulations, the
standard deviation of CPU workload is shown in Figure 24. In
this case, as there is one single injection pulse, the standard
deviation reaches a maximum shortly after SOI, then starts
decreasing. Again, the effect of the load balancing algorithm is
such as to approximately halve the standard deviation of CPU
load. It should be noted that in this case, the shape of the
standard deviation curve is apparently meandering. This is
caused by the mesh topology changes successively introduced
during the compression stroke, as layers of squish cells are
removed to keep mesh resolution approximately constant.
Every time this happens, the CPU decomposition of the finite

volume domain is updated, which may lead regions of the
cylinder with spray parcels to suddenly change CPU owner.

The wall time results reported in Figure 25 also highlighted that
it is much less. Speed-ups were of 5.23× with 534 parcels,
5.96× with 2000, 5.70× with 5000, 5.67× with 10000. These
speed-ups were slightly larger than those observed with the
CDC9 cases, despite the lower number of CPUs involved (20
against 48). Also, in this case, over-head due to parallel
communication operations was negligible in the load balancing
case.

As highlighted in Figure 26, the cumulative impact of spray load
balancing is directly transferred to the total simulation times, as
all other operators (mainly chemistry, diffusion, advection
terms) are not affected by the spray load balancing method.

Concluding remarks

In this work, we presented two methods to achieve efficient
load balancing of parallel spray calculations in multi-
dimensional engine simulations. The first addressed mesh-
independent collision estimation algorithms, by employing a
parallel kd-tree based clustering algorithm to classify eligible
collision pairs, independent of the underlying mesh. The
second achieved vaporization model load balancing by using a
greedy bucket algorithm: buckets represents containers with
cells and drops; these are assigned an owner CPU based on a
greedy procedure, which optimizes the parcel-weighted CPU
load.

Tests against sector and full meshes, with CDC or RCCI
operating spray strategies, led to the following conclusions:

- Identical results were obtained with or without the
vaporization load balancing algorithm;

NO loadB
0

10

20

30

40
np = 5514

NO loadB
0

5

10

15

20
np = 2000

NO loadB
0

5

10

15

20

25

30

35

40
np = 5000

NO loadB
0

0.2

0.4

0.6

0.8

1
np = 10000

sort spray cloud

compute bucket distrib

drop cell scatter

vaporize

send back drops

Page 13 of 15

10/16/2020 – ACADEMIA ONLY

Figure 24. Standard deviation of the instantaneous CPU load for

vaporization in the RCCI case, expressed as number of parcels. (red)
no load balancing; (blue) with vaporization load balancing.

- The vaporization load balancing greedy algorithm
yielded speed-ups between 4-6 times both on 20 and
48 CPUs, and on different spray configurations,
suggesting that the amount of speed-up achievable
depends on the instantaneous spray parcel
distribution in the finite volume domain;

- Mesh independent collision algorithms (with or without
parallel partitioning) yielded nearly identical spray
structure results, but a higher number of parcels than
with O’Rourke’s same-cell method; this suggested
that the same-cell method, while discarding potentially
likely collisions outside of the same cell, also
counterintuitively overestimates the number of
collisions that can take place among parcels of the
same cell;

- Most CPU time in both mesh-independent collision
algorithms was spent evaluating the collision
detection graph;

- Usage of the parallel kd-tree clustering method
allowed speed-ups of more than one order of
magnitude, up to 19.2× versus O’Rourke’s method,
and up to 33.8× versus the full mesh-independent
method.

Figure 25. CPU times during vaporization computation of the RCCI
case, with or without load balancing.

Figure 26. Cumulative CPU time impact of the mesh-independent load
balancing methods on the RCCI case: (left) Parabola collisions, no
vaporization load balancing; (right) kd-tree collisions; vaporization load
balancing.

Future work will be devoted to extending the application of the
greedy vaporization load balancing algorithm to more sub-

-60 -50 -40 -30

crank angle [deg aTDC]

0

0.5

1

1.5

CPU load, N
p
 = 534

-60 -50 -40 -30

crank angle [deg aTDC]

0

1

2

3

4

CPU load, N
p
 = 2000

-60 -50 -40 -30

crank angle [deg aTDC]

0

2

4

6

8

10

12

CPU load, N
p

 = 5000

-60 -50 -40 -30

crank angle [deg aTDC]

0

5

10

15

20

25

30

CPU load, N
p
 = 10000

(load b)

(no loadb)

n
p
/n

cpu

NO loadB
0

0.5

1

1.5
np = 534

NO loadB
0

1

2

3

4

5
np = 2000

NO loadB
0

2

4

6

8

10

12
np = 5000

sort spray cloud

compute bucket distrib

drop cell scatter

vaporize

send back drops

NO loadB
0

5

10

15

20

25
np = 10000

PAR KDT, loadb
0

0.5

1

1.5

2

2.5

3

3.5
FRESCO CPU time, RCCI

spray

chemistry

advection

diffusion

parallel

rezone

tetris

misc

Page 14 of 15

10/16/2020 – ACADEMIA ONLY

models, such as the multiphase solver in the Equilibrium-
Phase (EP) framework [28].

References

[1] J. K. Dukowicz, "A particle-fluid numerical model for liquid
sprays," Journal of Computational Physics, vol. 35, no. 1,
pp. 229-253, 1980.

[2] D. J. Torres and M. F. Trujillo, "KIVA-4: An unstructured
ALE code for compressible gas flow with sprays," Journal
of Computational Physics, vol. 219, no. 2, pp. 943-975,
2006.

[3] J. C. Beale and R. D. Reitz, "Modeling Spray Atomization
with the Kelvin-Helmholtz/Reyleigh-Taylor Hybrid Model,"
Atomization and Sprays, vol. 19, no. 7, pp. 623-650,
1999.

[4] N. Abani and R. R. Reitz, "Unsteady turbulent round jets
and vortex motion," Physics of Fluids, vol. 19, no. 1, p.
125102, 2007.

[5] F. Perini and R. D. Reitz, "Improved atomization, collision
and sub-grid scale momentum coupling models for
transient vaporizing engine sprays," International Journal
of Multiphase Flows, vol. 79, pp. 107-123, 2016.

[6] A. Munnannur and R. D. Reitz, "Comprehensive Collision
Model for Multidimensional Engine Spray Computations,"
Atomization and Sprays, vol. 9, no. 6, pp. 597-619, 2009.

[7] D. P. Schmidt and C. J. Rutland, "A New Droplet
Collision Algorithm," Journal of Computational Physics,
vol. 164, no. 1, pp. 62-80, 2000.

[8] D. J. Torres, P. J. O'Rourke and M. F. Trujillo, "A
Discrete Multicomponent Fuel Model," Atomization and
Sprays, vol. 13, no. 2&3, p. 42, 2003.

[9] Y. Ra and R. D. Reitz, "A vaporization model for discrete
multi-component fuel sprays," International Journal of
Multiphase Flow, vol. 35, no. 2, pp. 101-117, 2009.

[10] F. Perini, "High-dimensional, unsupervised cell clustering
for computationally efficient engine simulations with
detailed combustion chemistry," Fuel, vol. 106, pp. 344-
356, 2012.

[11] F. Perini and R. D. Reitz, "FRESCO - an object-oriented,
parallel platform for internal combustion engine
simulations," in 28th International Multidimensional
Engine Modeling User's Group Meeting at the SAE
Congress, Detroit, 2018.

[12] F. Perini, S. Busch, K. Zha and R. D. Reitz, "Comparison
of Linear, Non-linear and Generalized RNG-based k-
epsilon models for turbulent diesel engine flows," in SAE
Technical Paper 2017-01-0561, Detroit, MI, 2017.

[13] B.-L. Wang, P. C. Miles, R. D. Reitz and Z. Han,
"Assessment of RNG Turbulence Modeling and the
Development of a Generalized RNG Closure Model," in
SAE Technical Paper 2011-01-0829, Detroit, MI, 2011.

[14] R. D. Reitz and F. V. Bracco, "On the Dependence of
Spray Angle and Other Spray Parameters on Nozzle
Design and Operating Conditions," in SAE Technical
Paper 790494, 1979.

[15] F. Perini, A. B. Dempsey, R. D. Reitz, D. Sahoo, B.
Petersen and P. C. Miles, "A Computational Investigation
of the Effects of Swirl Ratio and Injection Pressure on
Mixture Preparation and Wall Heat Transfer in a Light-
Duty Diesel Engine," in SAE Technical Paper 2013-01-
1105, Detroit, MI, 2013.

[16] A. Munnannur and R. D. Reitz, "A new predictive model
for fragmenting and non-fragmenting binary droplet
collisions," International Journal of Multiphase Flow, vol.
33, pp. 873-896, 2007.

[17] F. Perini, S. Busch and R. D. Reitz, "An Investigation of
Real-Gas and Multiphase Effects on Multicomponent
Diesel Sprays," in SAE Paper Offer 20PFL-0263, under
review, Detroit, MI, 2020.

[18] P. J. O'Rourke, "Collective drop effects on vaporizing
liquid sprays," Princeton University Ph.D. Dissertation,
Princeton, NJ, 1981.

[19] F. Perini, E. Galligani and R. D. Reitz, "An analytical
Jacobian approach to sparse reaction kinetics for
computationally efficient combustion modelling with large
reaction mechanisms," Energy&Fuels, vol. 26, no. 8, pp.
4804-4822, 2012.

[20] F. Perini, S. Busch and R. D. Reitz, "Investigation of post-
injection strategies for diesel engine Catalyst Heating
Operation using a vapor-liquid-equilibrium-based spray
model," The Journal of Supercritical Fluids, vol. 167, p.
105042, 2020.

[21] S. Busch, K. Zha, E. Kurtz, A. Warey and R. C. Peterson,
"Experimental and Numerical Studies of Bowl Geometry
Impacts on Thermal Efficiency in a Light-Duty Diesel
Engine," in SAE Technical Paper 2018-01-0228, 2018.

[22] S. Busch, K. Zha, F. Perini, R. D. Reitz, E. Kurtz, A.
Warey and R. Peterson, "Bowl Geometry Effects on
Turbulent Flow Structure in a Direct Injection Diesel
Engine," in SAE Technical Paper 2018-01-1794,
Heidelberg, Germany, 2018.

Page 15 of 15

10/16/2020 – ACADEMIA ONLY

[23] "Small-Bore Diesel Engine," Sandia Mational
Laboratories, 11 8 2017. [Online]. Available:
https://ecn.sandia.gov/engines/engine-facilities/small-
bore-diesel-engine/. [Accessed 2018].

[24] F. Perini, R. D. Reitz and P. C. Miles, "A comprehensive
modeling study of in-cylinder fluid flows in a high-swirl,
light-duty optical diesel engine," Computers and Fluids,
vol. 105, pp. 113-124, 2014.

[25] S. Busch and P. C. Miles, "Parametric Study of Injection
Rates With Solenoid Injectors in an Injection Quantity
and Rate Measuring Device," in ASME Paper No.
ICEF2014-5583, Columbus, Indiana, USA, 2015.

[26] R. Hanson, S. Curran, R. Wagner, S. Kokjohn, D. Splitter
and R. Reitz, "Piston Bowl Optimization for RCCI
Combustion in a Light-Duty Multi-Cylinder Engine," SAE
International Journal of Engines, vol. 5, no. 2, pp. 286-
299, 2012.

[27] F. Perini, S. Busch and R. D. Reitz, "A phenomenological
rate of injection model for predicting fuel injection with
application to mixture formation in light-duty diesel
engines," Proc. IMechE Part D: Journal of Automobile
Engineering, vol. 0, no. 0, p. 29, submitted.

[28] Z. Yue and R. D. Reitz, "An equilibrium phase spray
model for high-pressure fuel injection and engine
combustion simulations," International Journal of Engine
Research, vol. 20, no. 2, pp. 203-215, 2019.

Contact Information

Federico Perini
Federico.Perini@w-erc.com

Acknowledgments

This work was performed under Sandia Subcontract 1890589,
1, sponsored by the United States Department of Energy,
Office of Vehicle Technologies, with program managers
Gupreet Singh and Michael Weismiller.

Sandia National Laboratories is a multi-mission laboratory
managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security
Administration under contract DE-NA-0003525. The views
expressed in the article do not necessarily represent the views
of the U.S. Department of Energy or the United States
Government.

