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Abstract

The incorporation of detailed chemistry models inteinal
combustion engine simulations is becoming mandatsylocal,
globally lean, low-temperature combustion strategiee setting the
path towards a more efficient and environmentalistainable use of
energy resources in transportation. In this paper,assessed the
computational efficiency of a recently developedrsp analytical
Jacobian chemistry solver, namely ‘SpeedCHEM’, features both
direct and Krylov-subspace solution methods for imaxn
efficiency for both small and large mechanism siZés code was
coupled with a high-dimensional clustering alganittior grouping
homogeneous reactors into clusters with similartestaand
reactivities, to speed-up the chemical kineticsusmh in multi-
dimensional combustion simulations. The methodolwgg validated
within the KIVA-ERC code, and the computationali@éncy of both
methods was evaluated for different, challengingirem combustion
modeling cases, including dual fuel, dual dire¢gedtion and low-
load, multiple-injection RCCI, direct injection gdime compression
ignition (GDICI), and HCCI engine operation usingns-detailed
chemistry representations. Reaction mechanisms wctipal
applicability in internal combustion engine CFD siations were
used, ranging from about 50 up to about 200 spe€iemputational
performance for both methods was observed to redtme
computational time for the chemistry solution bytapmore than one
order of magnitude in comparison to a traditiord#gnse solution
approach, even when employing the same high-efigieinternal
sparse algebra and analytical formulations. Thisfioos that
consideration of detailed chemistry is not a botkk anymore,
allowing use of larger and more refined meshestheuresearch that
focused on algorithms for fast and efficient adisectwith a large
number of species is suggested.

Introduction

Research for advanced, cleaner and more efficiembbastion
strategies in internal combustion engines has lge@ed in the last
decade by the advancements in computer modelirig.HEs enabled
understanding of the interactions between fuel-aixture

preparation, ignition kinetics and pollutant foriatin both spark-
ignited and compression ignition combustion modesyugh more
comprehensive and reliable computer models [1jaihdements in
chemical kinetics modeling have allowed the develept of detailed
reaction mechanisms for diesel and gasoline fuelogates [2-3],
that incorporate thousands of species and elenyergaction steps,
providing insight into the interactions between togarbon

compounds on ignition, and at the same time yigldjnantitatively
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accurate predictions of the major pollutant speciescarbon
monoxide (CO), unburned hydrocarbons (UHC), nitrogeides
(NO,), as well as soot formation precursors (such dycpolic
aromatic hydrocarbons, PAH) [4].

While these models have successfully been applieziniple, zero-
or one-dimensional reactor or flame simulationg, tdomputational
burden for solving detailed chemical kinetics inltindimensional
computational fluid dynamics (CFD) simulations idill stoo
demanding when adopting fully comprehensive modhés is due
to the stiffness of the system of ODEs describihgnaical kinetics,
and the expense of advecting a huge number of epenier the
discretized domain. Thus, current practical sotutiapproaches
typically make use of splitting the chemical kiesiystem from the
CFD solver, and achieve detailed fuel kinetics niadehrough:

- Skeletal mechanisms for multiple fuels or multi-gmment fuel
surrogates, with up to about 200 species [5-6lpcal reduction
of more detailed reaction mechanisms through orfithe
reduction methods, often referred to as “dynamiapége
chemistry” (DAC) methods [7-10]; or direct integoat of the
detailed mechanisms using advanced, sparse solotiorerics
[11-13];

- Strategies to reduce the number of chemistry iategrs from a
full-chemistry approach, that requires solution aofchemical
kinetics system on every cell of the CFD domaie\ary time-
step of the flow solver, to a limited number of negentative
reactor configurations, through storage-retrieeahhiques [14-
17], multi-zone approaches [18], cell clusteringoaithms [19-
21].

In this work, we have developed and applied an rateuand
computationally efficient methodology to incorp@atdetailed
chemical kinetics in practical internal combust@ngine simulations,
featuring validated reaction mechanisms for mudtigind multi-
component fuels. The approach features a sparsgtiealaJacobian
chemistry solver, with optimal-degree interpolatiofi expensive
thermo-chemistry functions (“SpeedCHEM”) [11], tccamplish the
integration of the chemical kinetic ODE system, aadhigh-
dimensional clustering algorithm (HDC) [22] to reguthe span of
the discretized domain by grouping cells with s@milreactivity
within a hyper-dimensional state space representati

The approach was coupled with the KIVA-ERC code] anth the
SpeedCHEM solver [23,24] and the HDC clusteringoatgm [25]

were validated for standard reference cases. Thwoagh was
applied and its accuracy and scalability were iegtiby simulating a
variety of engine combustion cases, including duel, dual direct-
injection and low-load, multiple-injection RCCI, rdct injection
gasoline compression ignition with multiple injests (GDICI),

direct injection, and HCCI engine operation usingemi-detailed
reaction mechanism.

M ethodology
Solution of the chemical kinetic ODE system

We developed a computational methodology that featufull
integration of detailed reaction mechanisms with mechanism
reduction, to provide a numerically exact solutibhe SpeedCHEM
chemistry program [11] solves the system of ordindifferential
equations of chemical kinetics in the form needed nulti-



dimensional CFD codes, and other cases, includimgtant-volume
ignition simulations: given an arbitrary reaction echanism,
containing a set af; reactions amongs species,

ivl’(yiM{ - iVI'(',iMi”' k=1...,n, @)
i=1 i=1

wherev' and v" represent stoichiometric reaction coefficients f
reactants and products, respectively, &dhdhe species names, the
code computes the laws that determine the tempwomution of the
thermodynamic state of the described homogene@asting gas-
phase mixture with species mass conservation, idescby:

dY W & :
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where theqgy terms represent the reaction rates progress veriabl
the species molecular weights, apdthe mixture density. The
equation yields the rates of change of species fnastonsyY;, that
overall verify the mass conservation constral:= 1, or 2dY/dt =
0. Energy conservation, for ignition in a constaalwvne adiabatic
reactor, is given by:

U, dY,
— ——Z , ©)
W odt

where U represents the species' molar internal energ@ihe

mixture average specific heat at constant volummass units, and
the ODE yields the rate of change of reactor teatpee, d/dt.

Libraries for the evaluation of species and mixaveraged
thermodynamic properties and of the kinetic laws @ifferent
reaction types (Arrhenius, three-body, etc.) acduised in the code.
All of the equations are calculated in a matrixdzhsepresentation
that makes use of an internal sparse matrix algdtmary,
specifically developed for this application. As dlaian matrix
evaluation and solution are the most demandingstakking the
integration of the ODE system [11,26] due to itf stnd sparse
nature. Solution of the chemical kinetics problena¢complished by
integrating the system of equations with a numih&omputationally
efficient stiff-ODE solvers, including VODE, LSODEDASSL,
RADAUS5, RODAS, and MEBDF. Where not available, ih&ernal
ODE's sparse algebra for each of these solversewt@snded with the
capability for solving linear systems using sparsgrices and direct
sparse factorization through LU decomposition. emnore, an
optimal-degree interpolation approach for compatetlly expensive
temperature-dependent thermodynamic functions a@adtion rate
parameters allowed their evaluation to be spedyupptto two orders
of magnitude in comparison with their evaluatioringsintrinsic
compiler functions [25].

The major advantage of this computational setdpasa numerically
accurate solution can be provided in an overall GiRi¢ that scales
linearly with the number of species, as reportedFigure 1 for
constant-volume ignition cases. The overall conmral

performance was tested for an ignition delay stodya range of
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reaction mechanisms for single and multi-comporteydrocarbon
fuels. The tests featured 18 ignition delay caltois at
stoichiometric conditions, initial pressure of 20arb initial
temperatures between 700K and 1400K, and integrétierances of
er = 10% e, = 10%° on an Intel Core i5-2400 personal computer
running at 3100 MHz and with 8GB DDR3 memory witB33 MHz
frequency.
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Figure 1 - Linear scalability of the SpeedCHEM solfor ignition
delay calculations. (black) dense, (blue) sparsel) Krylov linear
system solver comparison.

It was observed that, for the ignition delay cadtions, the
SpeedCHEM solver ran from about 2 up to about Bdifaster than
what has been reported for other sparse chemusivgrs [12] for the
range of mechanism sizes of interest to CFD sinunaf i.e., 50 <
ns< 700.

When large reaction mechanisms are used, the du@ation of
Jacobian-associated linear systems through spaistetomposition
as in the aforementioned solvers may be expensiMaus,
preconditioning capabilities were implemented ie solver to enable
coupling with iterative Krylov subspace solverscisas the GMRES
algorithm implemented in LSODKR, VODPK, DASKR. Alfgtudy
of the derivation and calibration of a suitable qomditioner is
reported in [26]; however, it was shown, as alsomarized in
Figure 1, that using the direct solver was theropth approach for
the range of mechanism sizes applicable to CFD laiions.
Significant CPU time savings were enabled by thgdd<r solver only
for extremely large reaction mechanisms>(R000).

High-dimensional cell clustering (HDC)

Even with the computational speed-ups allowed leySpeedCHEM
package, the full chemistry solution in engine Ctulations is still

inefficient due to its inability to identify regisnin the domain with
similar reactivities, and thus to reduce the numlbérreactor

calculations at every time-step of the fluid solv@urbulence-

chemistry interaction models have been developexttount for the
detailed chemistry at the cell level. However, tieglect of sub-grid
scale effects, and the use of direct chemistrygnati®n has been
shown to provide good results for both conventiatiasel and low-
temperature combustion [27], even on coarse gfitls enables the
possibility of adopting a clustering approach tgaiups cells based
on their thermo-chemical state.



The approach adopted in this study is reportedgnrg 2: 1) First, a
suitable cell clustering algorithm is used to idgncells in the
discretized domain with similar thermodynamic statend
reactivities; 2) then, the cells are ‘grouped’;@ustered’, into larger
homogeneous adiabatic reactors based on a madstiwvgigpproach;
3) the chemistry ODE system is integrated onlytliis smaller set of
‘cell clusters’, providing rates of change of sgscmass fractions for
each in the current CFD solver time step; 4) finathe rates of
change in species mass fractions are re-mappedbaek individual
cells, using a mass-conservation based approach.

‘ Cell clustering H Solve chemistry H Cell remapping ‘

Figure 2 - Schematic of the CFD chemistry soluépproach with
cell clustering.

In the present study, SpeedCHEM was used as thmistng solver,
and the procedure developed by Babajimopoulos .e{18] and
improved by Liang et al. [28] was adopted for repiag. A high-
dimensional clustering algorithm [22] was developti used to
accomplish for cell clustering.

The developed algorithm considers the chemicaéstat each cell in
the domain, viz., temperature and selected spessss fractions, to
define a high-dimensional representation of thetiahireactor

conditions, X]-,j =1...,n4. where the total number of

dimensionsd is given by temperature plus a selected subset of

speciess:

X =T,

4
Xoq; =Yy, OkOS @

Page 3 of 12

In order to reduce the variable dependency of thaults, the
algorithm operates in a purely geometrical hypeesp where each
cell's variable is normalized within its currentobhl, in-cylinder
range. Thus, the HDC algorithm needs to accompfigh task of
clustering a cloud of points in a high-dimensiomgberspace.

To provide the algorithm with the required accuréaycombustion
calculations, the following strategies were adopted

- The distance measure should not mitigate distaacesg each
single dimension, as every variable in the highatisional
representation has a different physical meaningis,ththe
‘Manhattan’ distance metrics were adopted, as sgmted in
Figure 3, which express the distance functibietween two
arbitrary points< andy in the high-dimensional space as:

d
dy (x,¥)=2 % = i} G)
i=1

- The user needs to provide temperature and massiofrac
accuracies that should not be exceeded by theithgorThus, it
was chosen to initialize the clustering proceduith an initial
set of cluster centers, placed in a grid-like fashi(also
extremely efficient as it is possible to assignheeluster center
a fast unique index as in block-structured grids)reported in
Figure 4. Some of the clusters may be deleted wim@nare not
boxing any points; the initial distances amongdluster centers
being defined by the accuracy constraints in thesichl
(dimensional) space;

- The cluster centers should not move further thanréguested
accuracy distances during the execution of the telimy
algorithm, otherwise the accuracy settings wouldt he
complied with. Thus, a “bounding-box” constraintsadefined,
i.e., that every cluster center could only havenasnber points,
any of the ones initially placed in the neighboribgxes’.

These considerations led to the development of dified version of
the widely adopted-means algorithm [29] into a ‘bounding-box-
constrained k-means’, or BBC-kmeans [22].The athari proceeds
similarly as the k-means algorithm, i.e., at evétgration, the
clustered partition is improved by updating the stdm center
positions as the geometrical averages of their neemoints’
positions, and then re-evaluating all the pointiigster distances to
assign every point to the closest cluster centéroée position has
changed from the previous iteration). The grid-likscretization and
boxing constraints improve the general k-means aggtr by 1)
establishing a physically correct cluster centettialization; 2)
complying with the desired accuracy constraintsthie physical
domain; 3) reduce the algorithm’s computationak ¢asn O(n, n;),
where ny is the number of points and the number of clusters, to
O(ny 2, whered is the current number of dimensions, as everytpoin
is compared only to its boxing cluster centers, aotdto all of them
anymore. This dramatically affects the algorithmparformance in
practical cases, where point-to-cluster distand¢eutations represent
the bottleneck to the algorithm’s scaling. Anotlireportant feature
of the adopted approach is that the number of elusenters, and
thus the overall speed-up of the chemistry intégmaprocedure, is
automatically determined by the number of dimensi@mnd the
accuracy constraints only, and not on the numbepadfits to be
grouped.
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Figure 3 - Comparison between Euclidean (blue) &tahhattan'
(red) distance measures, in a two-dimensional space

S
BBC k-means, k=20

Figure 4 - Example of operation of the HDC algarttover a 2D
dataset. The benchmark points set is colored aitaptd final cluster
membership. Red circles indicate initial clustentee positions,
yellow stars with black lines the final cluster tams positions, and
conserved grid-like structure.

An overview of the mechanics of the present apgraageported in
Figure 4 for a sample 2D benchmark featuring 19-defined point

clouds [30], and where the clustering algorithminigialized to 20

initial cluster centers. The initial cluster gritd discretization has
red circles and lines, while the final cluster eeatare yellow stars
and black lines.

Engine Simulation Results
Computational setup

The developed computational approach was testeda foange of
engine simulation problems, featuring very difféereombustion
regimes and engine operation modes. All of the kitirans were run
using the KIVA-ERC code [31], a customized versajrthe KIVA-

3v code with improved sub-models for spray dynamansd
vaporization, turbulence and wall heat transferattreents. The
original detailed chemistry capability was repladad the current
SpeedCHEM solver and the high-dimensional clusteafgorithm
implementation. Details of the sub-models are riggobin Table 1.
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The HDC clustering algorithm setup is reported iablE 2. A
temperature resolution of 10 K and a species nrastidn resolution
of 100 ppm (mass) was used for the cluster centialization. As a
high-dimensional state space representation, textyrerand a subset
of species including 02, HO2, CO2, H20, as wellalisthe fuel
components, were used. The impact of temperatutk species
resolution, as well as of the species subset, enctimputational
accuracy and efficiency of the approach were stlii§22].

Table 1 - Sub-models in the KIVA-ERC code for tingiae
simulations in the present paper.

Phenomenon Sub-mode

Spray breakup KH-RT instability, Beale and Reit2][3

Near-nozzle flow Gas-jet theory, Abani et al. [33]

O’Rourke model [34] with ROI (radius-of

Droplet collision influence), [33]

Wall film O’Rourke and Amsden [34]
Evaporation Discrete multi-component,

P Ra and Reitz [35]
Turbulence RNG ke, Han and Reitz [36]
Combustion SpeedCHEM, Perini et al. [11,23]
Chemistry grouping| HDC algorithm, Perini et al. [23)

Table 2-Common HDC parameters settings for thesgagsented in
this study.

Parameter Value

- NCGHyg, iCgH15(PRF)

- NGH 16, IC10Ha5, iIC16H34, NCrgHay,
C18H381 C21H44(mu|tiChen)

20"02, COZ! HZO

Fuel species set

Other included species

Distance measure Manhattan

Temperature resolution

and span &r = 10.0 K,or = 1000

Species mass fraction

. gy = 10% oy = 4
resolution and span Y il

Here it was found that temperature has the greatgsict, and that
using stricter tolerances, like 5 K, is not worth the accuracy
improvement is not justified by the correspondingréase in CPU
time. Furthermore it was seen that the speciesutémo has a smaller



impact, as species quantities span orders of matmiand typically
the maximum species span, of 4 points for eachispedmension, is
always reached.

2D, HCCI combustion with Primary Reference Fuels

2D HCCI combustion cases in the light-duty GM 1diksel engine
were modeled following the experiments by Dempdegl.€37]. A
skeletal PRF-PAH mechanism with 108 species and reéd2tions
[38], obtained by reducing the detailed LLNL medisamby Mehl et
al. [39], and originally developed to model detdilgoot formation
kinetics, was used.

2D HCCI PRF
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Figure 5 - Predicted 2D HCCI pressure and heaasel¢races with
full chemistry (solid) or HDC (dashed+marks).
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Figure 6 - Predicted 2D HCCI pollutant emissionsi@@and NQ)
with full chemistry (solid) or HDC (dashed+marks).

A two-dimensional computational grid featuring 56@lls at BDC,
was used, with modification to the KIVA grid snappe allow for at
least 10 cell layers to be kept in the squish regien the piston is
near top dead centre (TDC). Predicted in-cylindesgure results are
plotted in Figure 5 for two cases with different PRuel
compositions and intake temperatures. An experiaterst numerical
validation of the reaction mechanism can be foun®8].
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Very small differences can be noticed in the predigressure traces
when using the full chemistry approach or the @rsg algorithm. It
should be noted that very good agreement was o&geigo in terms
of pollutant emission predictions, such as the unéd hydrocarbons
and nitrogen oxides shown in Figure 6. Here, gogteement is
shown despite the different orders of magnitudenspd, providing
noticeably greater accuracy than other cell clisgeapproaches,
where differences in species concentrations arertegto be up to a
factor of two at the end of the simulation [17].

J 2-injector RCCI, full mesh
10220 : \ \ 500
full chem.
O HDC

8- 400 _
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g 6 3002
: :
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e =
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2 100

% -10 0 10 20 30 © 29
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Figure 7 - Predicted pressure and heat releasestriacthe RCCI
SCOTE engine.

Finally, the CPU time performance showed a consisteduction
across the cases of slightly more than 4 times) fabout 35 minutes
to 8.5 minutes, with a maximum integration timepst#f the CFD

solver of 10us. The same analysis was repeated with a much more

refined grid having a spatial resolution of 0.7 namd featuring 3060
cells at BDC, and yielded similar results with @eg-up factor of 5.7
times. It should be noted that the CPU times reqgoatre referred to a
single CPU serial run. These result point out tte$ advanced
chemistry solution approach enables HCCI simulatieith accurate
heat transfer modeling to be carried out in CPlesimimilar to those
of much more simplified reactor-network-based mztthe models.

Heavy Duty, Dual-Fuel Direct I njection RCCI

The second test case featured heavy-duty, dual-fR€lCI
combustion achieved with direct injection of n-rem and iso-
octane primary reference fuels with two injectansthie Caterpillar
SCOTE engine, modified with an RCCI piston. 9baERIat 1300
rev/min was achieved through 62.1 mg premixed ©ase, 20.7 mg
injected iso-octane at 100 degrees bTDC and 600ifjaction
pressure; then, 10.2 mg n-heptane were injecteiD@tbar in two
steps, 58 and 37 degrees bTDC using a 2/3 vs.alif8 The case is
based on the experimental measurements by Wissiak §40]. A
full 360-degree mesh of the combustion chamber wgzsl for the
simulations, due to non-axial placement of thedtges, with about
49k cells at bottom dead center. Combustion cheynigas simulated
using the ERC PRF mechanism by Ra and Reitz [5].

As Figure 7 shows, the HDC algorithm provided gooatch of the
in-cylinder pressure and heat release traces ewerhis very
challenging case, where three injections produeeptiemixed fuel-
air mixture. Negligible errors in terms of the pmerhance and



pollutant parameters were observed, as reportektel in Table 3,
and locally in-cylinder in Figure 8.

In order to test the scaling of the computatioiraks with the HDC
algorithm for more refined grid resolutions, tygiaz full multi-
dimensional simulations, two more refined grids evgenerated by
applying a uniform refinement factor in every dirsem, having
about 86k and 262k cells at BDC, respectively. presentation of
the grids is reported in Figure 9. Comparison betwgredicted
results when using either the full chemistry or HH2C approach in
Table 3 show that, as expected, the accuracy ofctastering
algorithm is not affected by the number of cellghie domain, as the
clustering procedure is bound to the user’'s tentpeaand species
mass fraction constraints of Table 2. From the tpoinview of CPU
time, as also reported in Figure 10, significamirsgs, always greater
than 90% were seen for the chemistry part of theutations. For all
the grids tested, the amount of time spent on céteynivas less than
10% of the total CPU time, confirming the preseititernistry
approach allows more refined and accurate gridbeoused for
practical simulations.

L ow-load Gasoline Compression I gnition Combustion
GDICI combustion in a light-duty, compression igmit engine was
studied using 75 RON (74 AKI/PRF) and 93 RON (87 I/RRF)

gasoline fuels, adopting a triple injection strgtegb RON fuel was
used to produce 2 bar BMEP load at 1500
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Figure 8 - (left) Full chemistry vs. (right) HDC mparison at
different crank angle. -80 to -30 CA: equivalenag¢ias; -8 to 130
CA: temperature.



rev/min and 5 bar BMEP load at 2000 rev/min, wher@s RON fuel
was used to investigate 5 bar BMEP load conditinly,cas it was
difficult to achieve a lower load with 93 RON gasel due to its poor
auto-ignition characteristics. The cases mimic #x@eriments by
Ciatti et al. [41] in the study by Adhikary et {2].

Table 3 - Engine-out performance parameters foRBEI SCOTE
engine case. Grid resolution study.

49k cells
diff.
full chem. HDC %]
Chemistry
CPU time [h] 38.6 1.47 -96.2
ISFC [g/kwWh] 163.4 163.5 -0.06
Comb. Efficiency [%)] 98.2 98.1 -0.10
CA50 [deg ATDC] 6.50 6.52 0.31
Soot [g/kg] 8.80e-2 9.12e-2 3.63
NOx [g/kg] 8.00e-2 7.01e-2 12.3
HC [g/kg] 14.8 15.7 6.08
CO [g/kgd] 6.65 6.17 -7.21
86k cells
diff.
full chem. HDC %]
Chemistry
CPU time [h] 71.7 2.48 -96.5
ISFC [g/kWh] 163.1 163.2 0.06
Comb. Efficiency [%] 98.2 98.1 -0.10
CAG50 [deg ATDC] 6.52 6.51 -0.15
Soot [g/kg] 8.48e-2 8.86e-2 4.48
NOXx [g/kg] 8.10e-2 6.21e-2 -23.3
HC [g/kg] 14.7 16.1 9.52
CO [g/kgd] 6.31 6.13 -2.85
262k cells
diff.
full chem. HDC %]
Chemistry
CPU time [h] 320.5 12.8 -96.0
ISFC [g/kwWh] 162.8 163.0 0.12
Comb. Efficiency [%)] 98.2 98.0 -0.20
CA50 [deg ATDC] 6.52 6.51 -0.15
Soot [g/kg] 8.25e-2 8.60e-2 4.24
NOx [g/kg] 7.70e-2 4.84e-2 -37.1
HC [g/kg] 15.6 17.9 14.7
CO [g/kgd] 6.27 5.87 -6.38
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262k cells

49k cells

Figure 9 - Cross-sectional view of the computatiayrads

the RCCI calculations.
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Figure 10 - Simulation CPU times for the RCCI casith different
grid resolutions. Left bar: full chemistry; rightb HDC.
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Figure 11 - Pressure trace comparison for four llmedt GDICI
simulations with variable load, PRF number and EGRBIid) full

chemistry, (dashed+m

arks) HDC.
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Figure 12 - CPU time comparison for the four GDt@ses. (left) full
chemistry, (right) HDC.

The study used a computational mesh representingngime sector
and made of 8100 cells at BDC, and the ERC PRFhamsm [5]

was used to simulate combustion of the variable R@xsoline

surrogate. more details on the modeling approatdateon can be
found in [42]. A significant speed-up of 26.3 timeas observed in
terms of overall chemistry solution time when usitig HDC

algorithm on the full mesh, so that the total siatioin time could be
reduced from 58 h to 20.5 h when running on a sifgPU, as
reported in Figure 10.

Performance of the proposed methodology is repartefigure 11

and Figure 12. Here, the computational accuracy seen at the
whole range of loads, fuel PRF numbers and EGRecoisimulated,

and in presence of complex spray-flow interactigigen by the

triple injection strategy. Overall computationahés for chemistry
could be reduced by 10.3 times in the averagewailp simulations

with an 11k-cells grid to be computed in up to lgem one hour on a
single CPU.

A summary of predicted main combustion parametedsemgine-out
emissions for the GDICI cases is finally reportedTiable 4. The
results show excellent agreement in combustionngm{CA50),
where the largest error when using clustering agudo 0.04% in
comparison with the full chemistry approach; theeraf good
accuracy of the combustion development predicoaiso confirmed
by the low discrepancies in total heat release omhustion
efficiency, not larger than 0.53%. Also specificelficonsumption,
whose measure includes an estimate of how muchratetythe in-
cylinder pressure and wall heat transfer have bealculated
throughout the simulation, is predicted using @tisg well within a
1% error in comparison with the full chemistry apgch.

As far as the major pollutants are concerned, aertttan reasonable
accuracy is seen for all of the components, asreiirothe range
between 1 to 10% are seen. Only a single errorevalops up,
corresponding to NOprediction error in the very low load and high
EGR case, which added up to about 35%.

Table 4 - Engine-out performance parameters for ltvwe-load
Gasoline Compression Ignition cases.

2 bar IMEP, PRF74, 43% EGR
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full chem. HDC ‘[jj/zf]'
Chemistry CPU [h] 2.83 0.21 -92.6
ISFC [g/kwWh] 202.7 2035 0.44
Tot. heat release [J] 361 359 -0.53
CA50 [deg ATDC] 8.01 8.01 0.03
Soot [g/kg] 3.97e-4 4.09e-4 3.10
NOX [g/kg] 2.05 1.27 -37.6
HC [g/kg] 65.6 69.2 5.53
CO [g/kg] 83.5 88.8 6.4
5 bar IMEP, PRF74, 27% EGR

full chem. HDC ?(j/zf]'
Chemistry CPU [h] 3.40 0.43 -87.4
ISFC [g/kWh] 193.6 191.8 -0.92
Tot. heat release [J] 639.4 640.1 0.12
CA50 [deg ATDC] 8.02 8.02 0.04
Soot [g/kg] 2.80e-1 2.78e-1 -0.68
NOX [g/kg] 8.53 8.88 411
HC [g/kg] 15.2 15.2 -0.14
CO [g/kg] 47.6 41.9 -11.9
5 bar IMEP, PRF87, 6% EGR

full chem. HDC ‘[jj/zf]'
Chemistry CPU [h] 3.16 0.38 -88.0
ISFC [g/kWh] 190.7 189.4 -0.66
Tot. heat release [J] 778.0 777.2 -0.11
CA50 [deg ATDC] 7.01 7.01 0.04
Soot [g/kg] 1.74e-1 1.65e-1 -5.54
NOX [g/kg] 9.70 9.80 1.01
HC [g/kg] 12.7 13.3 462
CO [g/kg] 38.2 38.1 -0.31

This points out for possible improvements in the
clustering/remapping procedure to be identifiedeeidly in: 1) the
adopted remapping procedure by Liang et al. [9seoves mass but
not elements; this may have an impact in terms woflesired
accumulation of non-negligible quantities in thedps whose mass
fractions are small, negligible for combustion tigibut that can
have an impact on pollutant formation. 2) the teatacity-based
cluster temperature evaluation guarantees resuiisinvthe user
temperature resolution, but could be improved bhyae accurate,
yet computationally intensive, internal-energy-lthseterative
procedure.



Realistic surrogate fuel modeling

Achieving composition-wise comprehensive fuel mougl is
essential to improve combustion process simulatiod emission
analysis, especially for advanced engine developstestegies, such
as low temperature combustion and direct injectiord for complex
alternative diesel fuels. At the same time, a madtnponent fuel
chemistry model approach both requires a comprérerigel drop
physical representation, and multiple reaction wags modeling,
that leads to having a large, computationally espe@n reaction
mechanism which would be impossible to simulatehvat dense
chemistry approach. In the current study, F-76 §peay combustion
in a constant volume chamber is simulated usindl-@dnponent
physical fuel surrogate model for spray modelingupted with a
multiChem reaction mechanism featuring 225 speeied 1087
reactions [44]. The components in the 21-compofeitmodel were
carefully chosen to represent major species fonrghiexperimental
speciation data [45] for the fuel and the model fimposition was
formulated to describe the fuel's physical progstby matching its
distillation profile, specific gravity, lower heati value, hydrogen-to-
carbon (H/C) ratio and chemical class contents witasured data.
The reaction mechanism was developed to considdr efathe 21-
components in the chemistry calculation using ti8®SER model
[44] that employs either generic or detailed reatpathways.

The test-case used for the validation of the HD@o@thm, in

presence of multi-component spray vaporization aothbustion,
features a single-pulse injection from a 7-hole emm-rail injector,

an injection duration of about 2.4 ms and a totgdted mass of
about 103 mg.

6 Realistic surrogate modeling
4x 10 ‘ ‘ ‘ ‘ )5_%04
——HDC, n= 3
3.8 | ——HDC,n=4 10
HDC,n=5 'g‘
= 36 | ——HDCn=6 18 S,
a, O full chemistry|
234 6 %
i 2
o
3.2 4 =
i
3t 2
2. =0 . il -
0 1 2 3 4 5O
time [ms]

Figure 13 - Predicted pressure and heat releasecceparison for
the realistic diesel surrogate constant volume awtibn case. Full
chemistry (dashed black line + marks) vs. HDC soh# (colored
solid lines) with a different number of mandatonelf components,
ry, for the clustering procedure.

Diesel spray is injected in a high-temperature &igh-pressure
environment, whose initial conditions of 32 bargs@e and about
800 K temperature, are experimentally achievedr afpark ignition

of an acetylene/oxygen/nitrogen premixed chargee TFD model

features a sector mesh representing a single ndmdte and one
seventh of the cylindrical combustion vessel, watbk cells. Full

details on the detailed fuel composition, and oa #xperimental
conditions for this test case can be found in [44].
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Full chemistry HDC
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Figure 14 - Predicted local temperature and speugss fractions at
a vertical plane containing the injection axis, e after the start of
injection. (left) Full chemistry vs. (right) HD®; = 4.

As far as the HDC clustering algorithm performam@s concerned,
a species subset study was established in ordenderstand which
are the effects of using a larger number of chehtoenponents in
the high-dimensional representation. In particudasubset of the 21
representative fuel components, made up of theG3langest ones in
terms of initial mass fraction, as reported in EaBl("multiChem"),
was always mandatorily included in the clusterimgcpdure, while
all of the remaining components were only dynanycaicluded.
According to our assumption, at runtime, at theitrd@gg of every
call to the clustering procedure, a non-mandatemt £omponent
could be flagged as 'active’ and actually includedhe clustering



procedure if and only if its average mass fractionthe whole
domain exceeded a user-defined threshold, set;atY0.005.

In Figures 13 to 15 the results after the specigisset study,
considering a number of mandatory largest fuel cameptsn; = 3, 4,

5, 6, are presented. First, in Figure 13, the resaltgims of overall
predicted pressure and heat release rate tracerasented, and
compared to the full chemistry approach. All of 8pecies subsets
yield extremely accurate ignition timing. Howevarhen using the
largest species sets, i.e./5, 6, predicted ignition timing appears to
be delayed by about 0.04 ms than when using tHechdmistry
approach. A vertical cross-sectional slice of tlmmstant volume
chamber, intersecting the injection axis for onetlwd nozzles, is
reported in Figure 14. The plots show that thelteswhen adopting
the clustering algorithm, are locally consistenttvthe full chemistry
approach, i.e. the methodology is able to captateonly average
combustion timing, but local composition and thedymamics.

A study of the error introduced by the clusterimggedure on the
multi-component fuel surrogate case is reporte#igure 15. Here,
an error norm definition according to [22] was used

1| = pfull (T) _ pHDC (TX
e _Y ,[,:0 p™ (T)

I ful (T) _THoe (TX i (6)
T full (T) :

=t
dr+j
=0

$10.5

10

error

9.5

CPU time[h]

8.5

Figure 15 - Clustering error and CPU time comparidor the
realistic diesel surrogate case vs. number of ntangafuel
componentsy, for the clustering procedure.
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Realistic surrogate modeling
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Figure 16 - CPU time comparison for the realistiesdl surrogate
case. Full chemistry vs. HDC solutions with a dife number of
mandatory fuel components;, for the clustering procedure.

Equation (6) represents the average cumulativéivel@rror of the
clustered solutions over predicted global tempeeaind pressure.
From Figure 15, it appears that the optimal sotutimm an error
point of view was the one that featured =n 4 mandatory fuel
components, whose error was anyway only slightifiedint from the
n; = 3 solution.

The overall CPU time increased noticeably when gisiarger
numbers of mandatory fuel components, even if its wsill

significantly smaller than the CPU time requiredtbg full chemistry
approach. It should be noted that, even if theaWerror for larger
numbers of mandatory components was larger, it stéswithin

acceptable error limits, as the predicted ovemglition timing was
delayed by only about 0.04 ms, or 1.5%, in comparigith the full
chemistry case.

Figure 16 finally shows the amount of speed-upvad on the
chemistry solution by the clustering procedureaitged from about
2.7 times in the worst case, whekesrb, up to about 3.7 times where
n=3.

Conclusions

A methodology for the computationally efficient arporation of

detailed chemical kinetics mechanisms in interomhloustion engine
simulations of advanced combustion strategies withitiple and

multi-component fuels was developed. The methodofegtures the
adoption of a sparse analytical Jacobian chemissgiver

(SpeedCHEM) and of a high-dimensional cell clusigriHDC)

algorithm. The computational performance of the rspasolver
achieved up to three orders of magnitude speediupomparison
with the traditional, dense chemistry approach |fioge mechanisms
of up to about 7000 species, enabling engine CRilstions to be
run efficiently even with semi-detailed reaction ananisms with
hundreds of species. The clustering algorithm perémce was
validated against the full chemistry approach forrange of

challenging engine combustion modes, including HCd@lal-fuel,

dual-direct injector RCCI at high load, gasolinenpwession ignition
(GDICI), and constant-volume spray combustion wihlistic fuel

surrogate modeling. The following conclusions wer@wn:



¢« The sparse analytical Jacobian chemistry solveblesaCFD
simulations with comprehensive mechanisms to betigedly
viable, through reducing the computational burdenulp to
three orders of magnitude in comparison with tregitional
dense approach, and with no ad hoc simplificationshe
chemistry mechanism;

e The HDC algorithm overcame the limitations of cuire
clustering algorithms, whose efficiency deteriosaten large
grids and in presence of multi-component fuels. Ad-g
independent and unsupervised clustering proceda® wsed
that is only bound to definite accuracy -constrairfte
temperature and species mass fractions;

¢ The methodology was successfully applied fora warief
advanced combustion strategies cases, where thge rah
thermo-chemical conditions is so broad that chewnist
simplification algorithms are typically extremelgaccurate, or
computationally inefficient;

. For HCCI combustion, the multi-dimensional modeling
approach is competitive with simplified multi-zom®deling, as
full chemistry, coupled with detailed transport ameht transfer
can be modeled in similar CPU times;

¢ The approach allowed reduction of the CPU time spsn
chemistry by up to about 30 times, with differenoegredicted
engine output from the full approach being smatlem other
published approaches. The largest deviations wega 81 NQ
predictions, that however already showed significanid
dependency.

¢ Practical simulations with detailed chemistry andometry
modeling can now be effectively accomplished.

The present results have demonstrated that thetatignal burden
due to combustion kinetics can be reduced not ta bettleneck in

the overall simulation framework by the adoption advanced

combustion simulation algorithms. This suggestsfiiother research
to focus on enabling engine simulations to be runthw
comprehensive reaction mechanisms that featureouthdusands
species, through studying appropriate numericsfliod transport

when a very large number of species is present.
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