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ABSTRACT 

The simulation of combustion chemistry in internal combustion engines is challenging due to the need to 
include detailed reaction mechanisms to describe the engine physics.  Computational times needed for 
coupling full chemistry to CFD simulations are still too computationally demanding, even when distributed 
computer systems are exploited. For these reasons the present paper proposes a time scale separation 
approach for the integration of the chemistry differential equations and applies it in an engine CFD code. The 
time scale separation is achieved through the estimation of a characteristic time for each of the species and 
the introduction of a sampling timestep, wherein the chemistry is subcycled during the overall integration. 
This allows explicit integration of the system to be carried out, and the step size is governed by tolerance 
requirements. During the subcycles each of the species is only integrated up to its own characteristic 
timescale, thus reducing the computational effort needed by the solver. The present ODE solver was first 
validated using constant pressure batch reactor simulations with two different reaction mechanisms. Then the 
solver was coupled with the KIVA-4 code, and validated using HCCI and DI diesel combustion cases.  
Performance is compared with the commonly used DVODE chemistry solver and the results show that 
significant reductions in the total computational time with comparable accuracy are obtained with the new 
solution methodology. 

INTRODUCTION 

Increasing demand for more efficient combustion systems is driving research in the field of internal 
combustion engines to adopt CFD simulations coupled with detailed chemistry solvers  [1]. Among the reasons 
for this step is the need for high accuracy in predicting fuel chemistry. Many innovative combustion concepts 
that are being applied to internal combustion engines such as HCCI, PCCI, and RCCI rely on combustion 
chemistry and on the reactivity of the air-fuel mixture more than on mixing, flame development or chemistry-
turbulence interactions with the in-cylinder flow field [2,3]. Furthermore, simple phenomenological models are 
becoming inadequate for the prediction of pollutant emissions. In addition, increasingly restrictive regulations 
require significant design efforts to meet the required limits, so that a high degree of accuracy is needed in 
the modeling and simulation phases of engine development.  This also allows designers to reduce the need for 
expensive experimental campaigns on engine prototypes. In this regard, computational studies also need to 
consider physical and chemical interactions of the exhaust within after-treatment systems, which are also 
reacting environments. Finally, emerging alternative fuels, such as ethanol and biodiesels, are often blended 
with petroleum-based hydrocarbon fuels, and their combustion behavior is still under research. Their 
composition is usually variable, and predictive combustion mechanisms need to be based on robust chemistry 
modelling. The effect is that reaction mechanisms adopted for the prediction of internal combustion engine 
performance usually consist of hundreds to thousands reactions and species, and the option of exploiting 
skeletal mechanisms that are made of only a few chemistry steps appears to be ineffective and useless.  

The above factors are leading researchers in the field of internal combustion engines to couple CFD codes with 
detailed chemistry solvers.  CHEMKIN is one of the most widely adopted solvers because of its standard input 
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format, and its robustness due to the well-established DVODE solver. However, the increase in CPU times due 
to chemistry is significant, and can consume more than 90% of the overall CPU time during practical engine 
simulations. Thus, a number of efforts  have been directed toward reducing the computational time needed 
for solving the ODE system associated with combustion chemistry. Two groups of approaches are found. In 
the first group, works are chemistry-based, i.e., are devoted to the development of methodologies for 
simplifying the reaction mechanisms on-the-fly, thus reducing their size and, accordingly, the overall 
computation time. These approaches are based on sensitivity and reactivity analyses on the reaction 
mechanism. For example, a number of works employ the Direct Relation Graph (DRG) methodology [4,5,6], , 
and it has been reported to allow significant reductions in total computational times [7]. Further works rely on 
Element Flux analysis (EF) [8,9,10], a methodology which models the species in the reaction mechanism as 
sources/sinks of fluxes of atoms of elements (usually, carbon and oxygen, and hydrogen is sometimes 
considered), without requiring significant computational overhead, and thus allowing efficient on-the-fly 
mechanism reduction. Other efforts in this class of methods consider both chemical and mathematical 
analysis strategies, which however often introduce major overhead due to their more complex matrix 
manipulations.  This makes them inadequate for coupling with ODE solvers.  Therefore they are usually 
exploited only when generating skeletal mechanisms, due to their capability to provide better insights into the 
mechanism itself [1].  

A second class of methodologies is instead devoted to improving the numerical aspects of the ODE integration 
using knowledge of the problems associated with modeling chemically reacting environments. In particular, it 
is acknowledged that the non-linearity in the formulation of reaction rate variables, together with the strong 
degree of stiffness which affects the ODE systems due to the contemporary presence of species whose 
characteristic time scales can span time intervals ranging over more than 10 orders of magnitude, can lead to 
high computation times for most integration methodologies, since the smallest scales control the time-step 
size needed by algorithm convergence requirements. For example, an explicit time integration for a chemically 

reacting environment, proceeding at a time-step of the order of 10-13 s, would need millions of evaluations of 

the ODE system derivatives in order to integrate a 10-6 s simulation time interval, which is of the order of 

usual fluid mechanical time-steps during RANS CFD calculations. For these reasons, implicit solvers relying on 
variable-coefficient methods, such as the DVODE developed at the Lawrence Livermore Laboratories (LLNL), 
usually have the best performance as they are capable of extending the integration time-step if the fast modes 
of the ODE system have already reached their asymptotic values. However, among the drawbacks of these 
methodologies is the huge number of evaluations of the Jacobian matrix for the ODE system that are needed, 
thus requiring significant amounts of CPU time. For these reasons, a class of methodologies is available  that 
serve to better pose it from a numerical point of view independently from its chemical nature, so that the 
solution can be computationally as efficient as possible. These techniques include operations for numerically 
manipulating the system matrices, sorting the reactions and the species, reducing the sparsity of the Jacobian 
matrix, and separating the time scales of the variables [1,11].  

Previous studies developed of a class of solvers which exploit the separation of the variables’ time scales by 
actually integrating over a sample time interval only the variables whose characteristic timescales still have 
not been reached [12,13]. This approach can lead to a slight reduction in the total computation time for batch 
reactor problems, but no evidence has been seen for multidimensional CFD simulations. In this case, an 
explicit solution can be used, so that Jacobian matrix evaluations can be avoided. When used with CFD 
simulations, the sample time interval for the evaluation of time scales can be the integration time step for the 
flow field solver. In this way, one of the major drawbacks of implicit solvers can be avoided, namely the small 
initial timestep required in each computational cell and at each time-step of the flow solver.  

In the present work the performance two explicit ODE solvers is explored.  They are based on time scale 
separation (TSS), and tailored for coupling detailed combustion chemistry with multidimensional internal 
combustion engine simulations. In particular, an analytical expression that is based on instantaneous reaction 
rates  is used for estimating the time scales of the species. Then, the time scale separation is coupled with two 
explicit solvers: a 2nd order improved Euler scheme, and a 5th order Runge-Kutta-Fehlberg explicit solver. The 
accuracy and the performance of the two solvers  is studied for zero-dimensional reactors and compared with 
the reference DVODE solver. The solution procedures were also coupled with the KIVA-4 code. Overall, better 
performance compared with the DVODE solver was shown by the simple 2nd order Euler solver, while the 5th 
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order RKF scheme showed slightly better robustness. The TSS explicit solver also showed competitive 
speedups when parallelizing combustion chemistry in the KIVA code by means of a shared memory paradigm.   

The approximate time scale separation analysis is presented for the combustion chemistry and its coupling 
with explicit ODE solvers is described next. Then, a detailed comparison is reported showing the accuracy and 
the efficiency of the solver compared to DVODE. Finally, their performance is assessed using KIVA-4 for 
internal combustion engine simulations.  

 

TIME SCALE SEPARATION 

The broad range of timescales present in combustion chemistry usually limits the timestep of the chemistry 
ODE system. This is because the smallest scales are important even after the fastest species have already 
evolved. The time scale separation approach aims at freezing each species after a reasonably long time 
interval after it has completely evolved. In this way, the fastest modes are progressively deleted during the 
time integration, the stiffness of the system is reduced and some constraints on the increase in timestep are 
removed [12]. Figure 1 shows a schematic of this concept for the integration of an arbitrary ODE system made 
of n variables over a sample time interval, ∆t

sample
. The algorithm computes the evolution at a number of 

internal integration steps which depend on the integration method and on the local error estimate. Through 
time scale separation an initial estimate of the characteristic time of a generic variable is exploited (indicated 
as black ticks in the graph). These values thus give an indication of the characteristic time scale of the 
variables, which can be approximated as the nearest next order of magnitude value. Each of the variables is 
integrated and updated only until its own timescale value has been reached (red bars), and its value is then 
kept constant  until the end of the whole integration. Obviously, this simplification leads to the introduction 
of errors into the solution, but it will be shown that it can provide good results if a suitable choice of the 
sampling interval and a good estimate of the variables’ timescales is adopted. 

 

- Figure 1 – Integration exploiting time scale separation. 

TIMESCALES IN COMBUSTION CHEMISTRY 

The evolution of the chemically reacting environment is represented by a reaction mechanism, which 
considers n

s
 species and n

r
 reactions. The k-th reaction is expressed as [14]:  
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where matrices	�′ and �′′ (n
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) contain the stoichiometric coefficients of species in the reactions, and M is a 

matrix containing the names of the species considered in the reaction mechanism. Overall, the change in the 
species mass fractions can be described in terms of rates of progress variables of the reactions: 
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where the product defined by symbol * is taken element-wise; matrix Y (1 x n
s
) indicates the species mass 

fractions, W (1 x n
s
) their molecular weights, and the net species production rate array  ��  (1 x n

s
)  is evaluated 

as the net formation and destruction of species due to forward and backward reactions: 
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Matrices q (1 x n
r
) define the forward, backward and overall rates of the reactions; k

f
 and k

b
 (1 x n

r
) are the 

reaction rate constants and C (1 x n
s
) the instantaneous species concentrations. M

eff
 (1 x n

r
) contains the 

effective molecularity values for reactions which undergo third-body effects,  and is unity for elementary 
reactions.  
 
The timescales for the evolution of the species are directly linked with the forward and backward rates.  
Methods have been proposed for identifying and estimating fast and slow timescales in combustion chemistry, 
such as Computational Singular Perturbation (CSP) [15,16] or the Intrinsic Low-Dimensional Manifold (ILDM) 
[17,18]. However, these techniques require significant computational effort, and thus are usually only adopted 
for the construction of skeletal and reduced reaction mechanisms [13]. For this reason, an approach similar to 
that adopted by Gou et al. [12] has been adopted for the present study. In this approach, the characteristic 
time of each species is estimated from a linearization of the ODE system near the time instant at which it is 
evaluated. In particular, an approximation of the characteristic time  for the k-th species is : 
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where  � = ��	 	
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	 ∗ �/�	represents the species' change rate. In the present work a more general final 

expression is used. In this case, the characteristic time of evolution of the k-th species is computed as [19]: 
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An analytical derivation of expression (6) has been made under the simplifying assumption that third-body 
effects are not dependent on the k-th species: 
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After some manipulations, expression (7) is reduced to: 
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With the simplifying assumption that third-body effects, which do not depend on the k-th species can be 
neglected, the following expression allows thus the characteristic times to be computed without any 
computational overhead, as it only depends on known quantities:  
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When species are involved in partial equilibrium reactions, the contributions due to forward and reverse 
reactions are almost equal, and the resulting negligible variation in concentration can lead to very small 
timescales [20]. Similarly, reactions which are near equilibrium can also lead to significantly long characteristic 
times and these species are more likely to be active when their evolution is close to complete. For this reason, 
relation (6) has been modified in order to limit the increase in characteristic time of the equilibrium species. 
Since the reaction rates depend heavily on temperature, a relative threshold in the cumulative rate is defined. 
The contributions of each reaction are first sorted in ascending order, and the set of equilibrium reactions is 
defined as the set of the first k reactions whose overall sum contributes to the total by less than a user-
specified threshold, Cτ: 
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{ }






 ⋅≤∋=← ∑

=

q~sum~,,1max
1

τCqnkk
k

i
irK , (11) 

( ) ( )
( ) ( ) ( )




+=′
+=+′

=′
kkk

nknk

b

rr

:1~:1~:1~
:1~:1~

~
qqq

qq
q

f
. (12)

 

 

So,  the characteristic timescales are finally evaluated as: 
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Where again the division operator is taken as element-wise division. This formulation allows an estimate of the 
characteristic time scales of the species to be evaluated anytime and in virtually any chemically reacting 
system. In the following paragraphs, its implementation into two explicit ODE integrators is discussed.  

EXPLICIT INTEGRATION WITH TIME SCALE SEPARATION 

As shown in Figure 1, an estimate of the variable's time scales allows the stiffness of an ODE system to be 
reduced by progressively freezing the change in variables whose evolution is likely to be complete. A number 
of papers are available in the literature which  improve the computational efficiency of the integration of 
chemistry ODE systems by dynamically freezing some variables/equations [12,13,21]. In the present work, two 
explicit solvers for stiff ODE systems with time scale separation have been developed.  The first simpler one 
implements the improved Euler's method (IE), with O(h2) accuracy; the second implements the Runge-Kutta-
Fehlberg procedure (RKF45) which allows O(h5) accuracy. The choice of the two methods was motivated by the 
fact that time scale separation should lead to progressively non-stiff problems, with respect to the 
instantaneous integration time step, and thus a simple and computationally inexpensive integrator such as the 
IE is expected to yield accurate results.  However, the RKF45 method should be more reliable, even if at a 
higher expense.  

Both integrators are general, and assume an arbitrary input initial value problem expressed as [22]: 

( ) ( ) 0yyyf
y === 0,, ttt

dt

d
.             (14) 

In the case of chemical kinetics, the ODE system is autonomous, as the evolution of the system dy/dt only 
depends on species concentrations and temperature, and thus it does not rely on time. In presence of time 
scale separation, however, time dependency is needed for identifying, step-by-step, the set of active species to 
update the solution. Thus, an appropriate estimation of characteristic time scales within the ODE integrator is 
needed. For this purpose the procedure summarized in Figure 2 has been developed. The evaluation of time 
scales is made at fixed and equally spaced time values, which subdivide the total time interval into a number 
of subcycles. These internal integration steps are named 'sampling' intervals, and at each of them the 
characteristic time scales of the species is evaluated according to Eq. (13). Within each of these intervals, the 
initial value problem is completely defined, and each evolving species is integrated according to its 
characteristic time:  

( ){ }[ ]1logint 1010 += i
ih τ

.             (12) 

The relationship thus involves all the species whose timescale is at least one order of magnitude less than the 
current baseline integration timestep, and which are expected to complete their time evolution within their 
characteristic time. The procedure shown in Figure 2 also shows that, within each sample interval, any ODE 
integrator may be used, as the procedure is general, and the advancement in time is ruled by relative and 
absolute accuracy constraints, which either can be part of the integrator itself, or can be set through an 
external routine.  

The explicit, second-order IE integrator scheme  [23] considers that a first, simple Euler integration is 
performed over the current timestep h: 

( ) ( ) ( )( )tththt yfyy ,~ +=+ ;             (13) 

then, the first order solution is updated and improved by adopting the trapezoidal rule, through a second 
evaluation of the ODE function: 
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The explicit Runge-Kutta algorithm is one of the most reliable and less computationally expensive one-step 
methods, as it achieves increased accuracy through the evaluation of the function f at many points in the 
neighborhood of the starting point (t,y), instead of evaluating higher-order derivatives. In particular, the 
Runge-Kutta-Fehlberg variant (RKF-45) [24] yields O(h5) accuracy: 
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where coefficients a
ij
, b

i
, c

i
 are specific of the RK method adopted. This scheme allows error control over the 

4th-order solution to be estimated on the knowledge of the 5th-order one, with no need for further evaluations 
of the ODE system f. 

Error estimation and step size control 

Having an efficient estimate of the local error is mandatory for the integration of any ODE system, and it may 
be estimated by comparison between the two solutions [25]. In the present work, the local error was estimated 
using this method, and the 2nd-order solution of the IE method and the 5th-order one of the RKF-45 method 
were considered to be the ‘exact’ solutions ( y )  for the next integration time-step, while the lower-order 

methods produced the relative tentative, error-affected solution ( y~ ).  Thus, the estimate of local error array le 

was computed as [26]: 

( ) ( ) ( )hththt +−+=+ yyle ~     ,                      (17) 

and the accuracy constraint was assumed to be met when : 
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where ( )htATOLRTOL +⋅+= ytol  was an estimator of the overall error tolerance on the current values of 

the unknowns. The overall error estimator eest was then adopted when computing the tentative size for the 
next integration step: 
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where p indicates the accuracy order of the integration method.  
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Figure 2 - Flowchart showing ODE integration through time scale separation method at fixed sampling 
interval, ∆∆∆∆t

sample
. 
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TSS SOLVER ACCURACY 

Apart from the error tolerance constraints, which are problem-dependent, accuracy of the time integration 
depends on the two approximations discussed above. Without them, the TSS solver reduces to a standard 
explicit ODE solver. This is of particular importance, as practical I.C. engine simulations usually have larger 
base timesteps (of the order of 10-5 s) during the compression and expansion strokes, while they become 
smaller (e.g., about 10-8) when combustion and spray phenomena interact within the combustion chamber. For 
these reasons, a full validation of the TSS solver was first carried out for zero-dimensional constant pressure 
combustion, and compared with the VODE solver in terms of both predicted temperature and species 
concentration profiles. In order to have an overview of the accuracy of the TSS solver, two chemistry 
mechanisms relevant to internal combustion engine simulations were considered: the ERC n-heptane 
mechanism, consisting of 29 species and 59 reactions [27], and a reduced ethanol mechanism, consisting of 30 
species and 155 reactions, derived from the detailed LLNL mechanism [28]. For each of the two mechanisms, a 
matrix of simulations with different initial conditions and integration time intervals was setup. A summary of 
all the cases considered for the validation is reported in Table 1. 

Table 1 – Summary of initial reactor conditions considered for the TSS solver validation. 

Fuel ethanol n-heptane 

Mechanism Red. LLNL [28] ERC [27] 

Pressure (bar) {2.0; 20.0} {2.0; 20.0} 

Eqv. ratio (-) {0.5; 1.0; 2.0} {0.5; 1.0; 2.0} 

Temperature 
(K) 

{1141 : 1443} {750 : 1500} 

No. of cases 20 18 

 

As mentioned the accuracy of the TSS solver depends on two parameters: the choice of the sampling timestep 
for the evaluation of the species characteristic timescales, and the threshold for the reaction equilibrium 
assumption. As the interaction between these two sources of error is expected to be nonlinear, and their 
ranges cover different orders of magnitude, a rigorous procedure has been developed. In particular, a merit 
function was developed in order to compare the TSS solution with the VODE solver, using the same tolerance 
constraints (RTOL = 1.0e-4, ATOL = 1.0e-13): 
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The total integration time t
j
 was considered for the point-by-point accuracy evaluation of the TSS solver, for 

each of the n
c
 cases considered in the simulation matrix. Thus, the merit function considers the instantaneous 

behaviour of the solver and both species concentrations and system temperature are included since low 
temperature chemistry is of fundamental importance for the correct prediction of ignition within internal 
combustion engines. 

The merit function was evaluated over a matrix of 28 solver conditions, spanning the ranges 

{ }8765 10;10;10;10 −−−−=∆ samplet and { }20151052 10;10;10;10;10;1.0;0.1 −−−−−=τC  , and the merit landscapes were 

computed through ordinary kriging. This procedure was chosen due to its proven reliability in reconstructing 
complex response surfaces [29,30,31].  A similar procedure has been applied also to the analysis of the CPU 
time requirements of the TSS solver.  Here the speedup due to the adoption of the time scale separation was 

compared to that of the VODE solver when run with the same samplet∆  bounds. The results of this analysis are 
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presented in Figures 3 to 4, and a more detailed overview of the solutions computed by the solvers at different 
sampling time intervals is reported in Figures 5 to 6. 

From the observation of the merit landscapes, it is evident that the accuracy of the solution mainly depends 
on the sampling timestep, and that a lower baseline interval leads to a more accurate solution, as expected. 
Furthermore, it appears that choosing a lower threshold value - thus increasing the residence time of reactions 
near equilibrium - only partially affects the accuracy of the solution, and leads to sensible improvements only 
at very low values, below 10-15. However, it appears that a correct choice of the equilibrium threshold 
significantly influences the overall CPU time needed for the integration. In particular, for the IE solver, a 
considerable speedup with respect to VODE is observed for threshold values greater than 10-5. This is 
particularly true for the ERC n-heptane mechanism, where the choice of that threshold value provides a 
benefit at the larger sampling time intervals. Furthermore, it can be observed that the improvement in CPU 
times is much more significant for the larger, ethanol mechanism, being in the range of 15 - 40 times, while 
the improvement for the smaller ERC mechanism ranges from unity up to about three times. The fact that the 
speedup increases with smaller sampling intervals, is of particular relevance to engine simulations. In the 
KIVA code for instance, the baseline timestep is controlled by the fluid flow, combustion (heat release), spray 
development, evaporation, etc. The capability of the TSS solver to have better performance at small timesteps 
can thus improve the CFD code’s performance.  

As far as the RKF45 solution is concerned, the landscapes show that the higher order accuracy leads to more 
accurate results than the explicit Euler solver when compared at the same sampling interval value. However, 
the major drawback of this better behavior is a significantly lower speedup factor. In particular, maximum 
speedups ranged up to 20 for the ethanol mechanism, and up to 1.4 times for the ERC mechanism. The 
average speedups were thus between 2 and 3 times lower than the corresponding values obtained through the 
explicit Euler solver. Furthermore, it can be observed that the RKF45 solver was not competitive compared to 
VODE at larger timesteps, and it is even slower in many cases for the ERC mechanism.  
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Figure 3 - Merit and speedup landscapes for the Ethanol mechanism. Left: improved Euler solver; right: 
RKF-45 solver. 

 

 

Figure 4 - Merit and speedup landscapes for the ERC n-heptane mechanism. Left: improved Euler solver; 
right: RKF-45 solver. 
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RESULTS AND DISCUSSION 

The accuracy of the KIVA4-TSS approach was assessed by using two different engine configurations. First a 2D 
model of the Sandia HCCI engine [33] was considered, since this problem emphasizes the chemistry solver. 
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measured in-cylinder pressures. The TSS simulations were run with the original KIVA timestep control 
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As the detailed chemistry accounts for most of the computational time in the simulation [21], the chemistry 
ODE system was parallelized with the OpenMP shared-memory paradigm [34], and tested on a 4-core, Intel i7 
920 machine. Figure 7 includes the comparison between DVODE and TSS solutions at the two engine operating 
conditions, in terms of in-cylinder pressure traces. A very good agreement is  

 

Figure 5 - Accuracy and time behaviour of the TSS solver in comparison with VODE: ERC n-heptane 
mechanism. 
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Figure 6 - Accuracy and time behavior of the TSS solver in comparison with VODE: ethanol mechanism. 
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The overall reduction in computational time of the TSS solver was significant for both serial (1CPU) and 
parallel (4CPU) simulations, as shown in Figure 8 – by more than a factor of 3. 

 

 

Figure 7 – In-cylinder pressure comparisons for HCCI cases based on the ethanol mechanism. 

 

Figure 8 – CPU times requirements for the ethanol HCCI simulations: serial (1 CPU) and parallel (4 CPU) 
computation. 
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The parallel efficiency of the TSS solver was similar to that of DVODE, which was about 80.0%.  

The validity and the computational efficiency of the KIVA4-TSS solver code were also assessed by modeling a 
direct-injected diesel engine manufactured by VM Motori. The engine specifications and the computational 
grid are reported in Table 3. A a total of six different operating conditions were simulated, at full and 50% 
load, with engine speeds ranging from 1400 to 4000 rev/min. Among these cases, both single and multiple 
injections with up to three injection pulses (pre-, pilot- and main pulse) were used.  

 Table 3 – VM Motori DI diesel engine specifications and computational grid setup. 

Engine Specifications 

Number of cylinders 4 

Displacement [cm3] 2776 

Bore x Stroke [mm] 94.0 x 100.0 

Conrod length [mm] 159.0 

Compression Ratio 17.6 : 1 

Computational Grid 

Cells at IVC: 15705 

 

Cells at TDC: 6300 

Azimuth: 60 deg 

 

 

The in-cylinder pressure and apparent heat release results for both the KIVA4-TSS and KIVA4-VODE 
simulations are presented in Figure 9 together with the experimental curves provided by VM Motori. The heat 
release curves were obtained using the Rassweiler and Withrow model [35].  It is seen that the TSS solver 
provides very good predictions of engine performance at both full and partial loads.  There are some 
discrepancies compared to the DVODE solver, as was also seen for the ethanol HCCI case. As far as the 
computational performance is concerned, despite the limited speedup seen when using the smaller n-heptane 
mechanism, significant overall time savings of about a factor of two are achieved. The minimum timesteps 
during the simulations were of the order of 10-8 s, and the TSS speedup was about a factor of 3 during that 
period. A summary of the computational performance of the two solvers is reported in Figure 10.  

 

CONCLUDING REMARKS 

The development of a fully explicit solver for chemistry ODEs applied to internal combustion engine 
simulations has been presented. The new solver removes stiffness by separating the instantaneous 
characteristic timescales of the independent variables, and by employing a linearization at fixed, equally-
spaced sampling times.  Each of the variables is integrated according to its own characteristic time, and then 
its composition is frozen.  This allows explicit integration to proceed at larger timesteps. The TSS solver was 
validated by comparing its performance with the widely adopted VODE solver for two different reaction 
mechanisms. Once the accuracy and the computational efficiency of the solver were assessed for constant 
pressure reactor simulations, it was coupled to the KIVA4 code for modeling an HCCI-operated and a current 
production, direct-injected diesel engine. The following conclusions can be drawn: 
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Figure 9 – In-cylinder pressure comparisons for DI Diesel combustion cases using the reduced ERC n-
heptane mechanism. 
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Figure 10 – CPU times requirements for computation of the six operating conditions considered for the VM 
Motori diesel engine. 

 

1. The accuracy of the solution was found to be acceptable as long as the sampling time intervals were 
not greater than 10-6 s. However, the solver remained robust even with larger sampling times.  
 

2. The present modified estimates of reaction rates near equilibrium allow competitive CPU times. The 
error appears to be negligible with sampling times lower than 10-6 s. An optimum threshold value of Cτ 
= 10-5 for identifying reactions at equilibrium was found to be the best tradeoff between accuracy and 
computational efficiency; 
 

3. The computational speedup allowed by the adoption of the TSS solver was larger for larger chemical 
reaction mechanisms.  
 

4. Coupling the TSS solver with the KIVA4 code allowed a significant reductions in overall CPU times 
compared with the standard VODE solver. Speedups of a factor of 2 to 3 were seen in the DI diesel 
engine with the use of the relatively small n-heptane mechanism, while speedups up to factors of 20 
were seen for the HCCI engine case.  
 

5. The 2D, kinetically-controlled HCCI simulations showed a really good agreement of the TSS solver 
compared to the VODE solution. However, some minor differences among the solutions were observed 
for the more complex DI diesel combustion case. 
 

6. Overall, the TSS solution is a promising substitute for more common implicit solvers. Further research 
is needed for further optimizing the numerical tolerances at a broader range of combustion conditions, 
and for evaluating the possibility of choosing the chemistry ODE solver based on the instantaneous 
reactivity conditions of the system. 

ACKNOWLEDGEMENTS 

The authors gratefully thank Sandia Laboratories and VM Motori for providing experimental measurements.  

REFERENCES 

1. T. Lu and C.K. Law, “Toward accommodating realistic fuel chemistry  in large-scale computations”, 
Progress in Energy and Combustion Science 35 (2009), 192 – 215. 

2. Tamagna D., Ra Y., Reitz R.D. “Multidimensional Simulation of PCCI combustion Using Gasoline and Dual-
Fuel Direct Injection with Detailed Kinetics”. SAE technical paper 2007-01-0190, 2007. 

1400 2000 3000 4000
0

5

10

15

20

25

C
P

U
 t

im
e 

[h
]

Full load

 

 

1400 2400
0

5

10

15

20

25
Part load

VODE
TSS



Page 18 of 19 

 

3. Kokjohn S., Reitz R.D., “A Computational Investigation of Two-Stage Combustion in a Light-Duty Engine”. 
SAE International Journal of Engines, 1(1):1083–1104, April 2009. 

4. Lu, T. and Law, C. K., “A directed relation graph method for mechanism reduction” Proceedings of the 
Combustion Institute, 2005, 30, 1333 – 1341. 

5. Lu, T. and Law, C. K., “On the applicability of directed relation graphs to the reduction of reaction 
mechanisms”, Combustion and Flame, 2006, 146, 472 – 483. 

6. Pepiot-Desjardins, P. and Pitsch, H. “An efficient error-propagation-based reduction method for large 
chemical kinetic mechanisms”, Combustion and Flame, 2008, 154, 67 – 81. 

7. Shi, Y.; Liang, L.; Ge, H.-W. and Reitz, R. D., “Acceleration of the chemistry solver for modeling DI engine 
combustion using dynamic adaptive chemistry (DAC) schemes”, Combustion Theory and Modelling, Taylor 
& Francis, 2010, 14, 69-89. 

8. Revel, J.; Boettner, J. C.; Cathonnet, M. and Bachman, J. S., “Derivation of a global chemical kinetic 
mechanism for methane ignition and combustion”, Journal de chimie physique, 1994, 91, 365 – 382. 

9. He, K.; Androulakis, I. P. and Ierapetritou, M. G., “On-the-fly reduction of kinetic mechanisms using element 
flux analysis”, Chemical Engineering Science, 2010, 65, 1173 – 1184. 

10. He, K.; Ierapetritou, M. G. and Androulakis, I. P., “Integration of on-the-fly kinetic reduction with 
multidimensional CFD”, AIChE Journal, 2010, 56, 1305 – 1314. 

11. Schwer D.A., Tolsma J.E., Green W.H., Barton P.I., “ On upgrading the numerics in combustion chemistry 
codes”, Combustion  and Flame, 128(3):270 – 291, 2002. 

12. X. Gou, W. Sun, Z. Chen, Y. Ju, “A dynamic multi-timescale method for combustion modeling with detailed 
and reduced chemical kinetic mechanisms”, Combustion and Flame 157 (2010), 1111 – 1121. 

13. M. Valorani and D.A. Goussis, “Explicit Time-Scale Splitting Algorithm for Stiff Problems: Auto-ignition of 
Gaseous Mixtures behind a Steady Shock”, Journal of Computational Physics 169 (2001), 44 – 79. 

14. J. Warnatz, U. Maas, R. W. Dibble, “Combustion: Physical and Chemical fundamentals, Modeling and 
Simulation, Experiments, Pollutant Formation”, Springer, 2006. 

15. S.H. Lam, D.A. Goussis, "The CSP method for simplifying kinetics", International Journal of Chemical 
Kinetics 26 (1994), 461 - 486. 

16. S.H. Lam, D.A. Goussis, "Understanding Chemical Kinetics with Computational Singular Perturbation", 
Twenty-second symposium (International) on Combustion /The Combustion Institute, 1988, 931 - 941. 

17. U. Maas, S.B. Pope, "Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition 
space", Combustion and Flame 88 (1992), 239 - 264. 

18. S.B. Pope, U. Maas, "Simplifying chemical kinetics: trajectory-generated low-dimensional manifolds", 
Technical Report, Cornell University, 1993. 

19. D.A. Knoll, L. Chacon, L.G. Margolin, V.A. Mousseau, “On balanced approximations for time integration of 
multiple time scale systems”, Journal of Computational Physics 185 (2003), 583 – 611. 

20. K. He, M.G. Ierapetritou, I.P. Androulakis, "A graph-based approach to developing adaptive representations 
of complex reaction mechanisms", Combustion and Flame 155 (2008), 585 - 604. 

21. L. Liang, S.-C. Kong, C. Jung, R.D. Reitz, "Development of a Semi-Implicit Solver for Detailed Chemistry in 
Internal Combustion Engine Simulations", Journal of Engineering for Gas Turbines and Power 129 (2007), 
271 - 278. 

22. E.S. Oran, J.P. Boris, "Numerical Simulation of Reactive Flow", Elsevier, ISBN 0-444-01251-6. 
23. O.T. Hanna, “New explicit and implicit ‘Improved Euler’ methods for the integration of ordinary differential 

equations”, Comput. Chem.. Engng. 12(11), 1083- 1086, 1988. 
24. E. Fehlberg, "Low-order classical Runge-Kutta formulas with stepsize control and their application to some 

heat transfer problems", NASA technical report TR R-315, 1969.  
25. L.F. Shampine, “Error Estimation and Control for ODEs”, Journal of Scientific Computing 25 (2005), 3 – 16. 
26. A. Sandu, J.G. Verwer, J.G. Blom, E.J. Spee, G.R. Carmichael, F.A. Potra, “Benchmarking Stiff ODE Problems 

for Atmospheric Chemistry Problems – II: Rosenbrock Solvers”, Department of Mathematics, The University 
of Iowa / Department of Numerical Mathematics, CWI Amsterdam, 1997. 

27. Patel, A., Kong, S.-C., Reitz, R. D., " Development and Validation of a Reduced Reaction Mechanism for HCCI 
Engine Simulations", SAE technical paper 2004-01-0558, 2004. 

28. Marinov, N.M., "A Detailed Chemical Kinetic Model for High Temperature Ethanol Oxidation", Int. J. Chem. 
Kinet. 31:183-220 (1999). 

29. Jouhaud, J.-C., Sagaut, P., Labeyrie, B., "A Kriging Approach for CFD/Wind-Tunnel Data Comparison",J. 
Fluids Eng. 128 (2006), 847 - 855. 

30. Laurenceau, J., Sagaut, P, "Building Efficient REsponse Surfaces of Aerodynamic Functions with Kriging and 
Cokriging", AIAA Journal 46 (2008), 498 - 507. 



Page 19 of 19 

 

31. Jouhaud, J.-C., Sagaut, P., Enaux, B., Laurenceau, J., "Sensitivity Analysis and Multiobjective Optimization 
for LES Numerical Parameters", J. Fluids Eng. 130 (2008), 021401 1-9. 

32. Torres, D. J. and Trujillo, M. F., “KIVA-4: An unstructured ALE code for compressible gas flow with sprays”,  
Journal of Computational Physics, 2006, 219, 943 – 975. 

33. Sjöberg, M., Dec, J. E. “Influence of EGR Quality and Unmixedness on the High-Load Limits of HCCI 
Engines”, SAE International Journal of Engines, 2009, 2, 492-510. 

34. Chapman, B., Jost, G. and Pas, R. v. d. “Using OpenMP: portable shared memory parallel programming”, MIT 
Press, 2008. 

35. Heywood, J.B., “Internal combustion engine fundamentals”,  McGraw-Hill, 1988. 
 

CONTACT INFORMATION 

Federico Perini 
Dipartimento di Ingegneria Meccanica e Civile 
Università di Modena e Reggio Emilia 
strada Vignolese, 905/B – 41125 Modena, Italia 
Ph.: +39 – 059 – 2056101 
email: federico.perini@unimore.it 

DEFINITIONS/ABBREVIATIONS 

ATOL Absolute local error 
tolerance 

CFD Computational fluid 
dynamics 

HCCI 
 
 

Homogeneous-charge 
compression ignition  

IE Improved Euler's 
integration scheme 

ODE Ordinary differential 
equation 

PCCI Premixed Charge 
Compression Ignition 

RANS Reynolds-averaged 
Navier Stokes 

RCCI Reactivity Controlled 
Compression Ignition 

RKF45 Runge-Kutta-Fehlberg 
Method 

RTOL Relative local error 
tolerance  

TSS Time scale separation 

 


